
AD-A268 156USAISE C l ll ll rlr~ll lrl
US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES

ELECTE

AUG 16 1993D

SAMeDL:
Technical Report Appendix D -

Language Reference Manual

ASQB-GI-92-0 17

September 1992

A~33uz!t4 ;. ,:.:.,, Asscu

<A ' 93-18744

ARMICS
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

SECURITY CLASSIFICATION OF THIS PAGE
Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188
REPORTDOCUMENTATIONPAGEExp. Date: Jun 30, 1986

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCTASSIFT D SNONE
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Eb. DECLASSIFICATION/DOWNGRADING SCHEDULE NIA

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable)
____ ___ ____ ___ ___ ____ _ _ ____ ___ ___N/A

6c. ADDRESS (City. State, and Zip Code) 7b. ADDRESS (City, State, and ZIP Code)

NIA
8b. NAME OF FUNDING/SPONSORING 8 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATIONI (if applicable)

Software Technology Branch, ARL. AMSRL-CI-CD
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

115 O'Keefe Bldg. PROGRAM . PROJECT I TASK IWORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.
Atlanta, GA 30332-0800

11. TITLE (include Security Classification)

SAMeDL: Technical Report Appendix D - Language Reference Manual

12. PERSONAL AUTHOR(S)

MS. Deb Waterman
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day4 15. PAGE COUNT

Technical Paper FROM Apr 91 TO Sept 92 Sept 15, 1992 125

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Ada Database Access, SAMeDL, Ada extension mod-

ule, SQL

19. ABSTRACT (Continue on reverse If necessary and Identify by block number)

This report details the research efforts into the SQL Ada Module Data-
base Description Language (SAMeDL). Four compilers are presented
(Oracle, Informix, XDB, and Sybase) that allow Ada application programs
to access database using a standard SQL query language. Copies of the
compiler can be obtained from the DoD Ada Joint Program Office
703/614-0209.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[9] UNCLASSIFIED/UNLIMITEDQ SAME AS RPT. Q DTIC USERS UNCLASSIFIED

Z2a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE(include Area Code 22c. OFFICE SYMBOL

LTC David S. Stevens (404) 894-3110 AMSRL-CI-CD

DD FORM 1473, 84 MAR 83 APR edition may be used until exhsusted.
AP other editions are obsolWts. SECURITY CLASSIFICATION OF THIS PAGE

This research was performed by Statistica Inc., contract number DAKF11-91-
C-0035, for the Army Institute for Research in Management Information,

Communications, and Computer Sciences (AIRMICS), the RDTE organization of
the U. S. Army Information Systems Engineering Command (USAISEC). This final

report discusses a set of SAMeDL compilers and work enviornment that were devel-
oped during the contract. Request for copies of the compiler can be obtained from
the DoD Ada Joint Program Office, 703/614/0209. This research report is not to
construed as an official Army or DoD Position, unless so designated by other

authorized documents. Material included herein is approved for public release,
distribution unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

Glenn E. Racine, Chief ames D. Gantt, Ph.D.
Computer and Information Director
Systems Division AIRMICS D 13 QJA.-1I A i'j I ,,,.D !D

Acc-sior o:/r

rWIS CRA&I
)IriC TAB 0

U a!- o), r-ed ceI J•JStItI~jtIOn

01st' sbution I

A vdlilt)Ilhty Codes

Av9R ,ndia1orD,.,,l svecial

SAKeDL.TR.LOA1
5 Sep 92

APPEMWZX D

S)A(eDL Laniguage R~eferSUCe Man~ual

D-1

SAMeDL Language Reference Manual

Internetrics, Inc.

Document IR-VA-011-1
Date 07-July-1992

Published by
Intermetrics, Inc.

733 Concord Avenue, Cambridge, Massachusetts 02138

Copyright (c) 1992 by Intermetrics, Inc.

This material may be reproduced by or for the U.S. Government pursuant to the copyright license
undei tic clause at DFARS 252.227-7013 (Oct. 1988).

Table of Contents

Chapter 1 Introduction 1
1.1 Scope ... 1
1.2 Notation .. I
1.3 Forward References .. 2
1.4 References ... 2
1.5 Design Goals And Language Summary ... 3

1.5.1 Design Goals .. 3
1.5.2 Language Summary .. 3

1-5.2.1 Overview .. 3
1.5.2.2 Compilation Units ... 4
1.5.2.3 Modules ... 4
1.5.2.4 Procedures and Cursors ... 4
1.5.2.5 Domain and Base Domain Declarations 5
1.5.2.6 Other Declarations .. 5
1.5.2.7 Value Expressions and Typing 5
1.5.2.8 Standard Post Processing 5
1.5.2.9 Extensions ... 5
1.5.2.10 Default Values in Grammar 6

Chapter 2 Lexical Elements ... 7
2.1 Character Set .. 7
2.2 Lexical Elements, Separators, And Delimiters 7
2.3 Identifiers .. 8
2.4 Literals And Data Classes .. 8
2.5 Comments ... 9
2.6 Reserved Words ... 10

Chapter 3 Common Elements .. 11
3.1 Compilation Units .. 11
3.2 Context Clauses ... 11
3.3 Table Names and the From Clause .. 12
3.4 References ... 12
3.5 Assignment Contexts and Expression Conformance 16
3.6 Standard Post Processing 17
3.7 Extensions .. 17

Chapter 4 Data Description Language and Data Semantics 19
4.1 Definitional Modules .. 19

4.1.1 Base Domain Declarations .. 20
4.1.1.1 Base Domain Parameters 20
4.1.1.2 Base Domain Patterns .. 21
4.1.1.3 Base Domain Options ... 22

4.1.2 The SAME Standard Base Domains 24
4.1.3 Domain and Subdomain Declarations 24
4.1.4 Constant Declarations ... 28
4.1.5 Record Declarations ... 30
4.1.6 Enumeration Declarations .. 32
4.1.7 Exception Declarations ... 33
4.1.8 Status Map Declarations ... 33

4.2 Schema Modules .. 34

4.2.1 Table Definitions .. 35
4.2.2 View Definitions ... 36

4.3 Data Conversions ... 38

Chapter 5 Abstract Module Description Language 41
5.1 Abstract Modules ... 41
5.2 Procedures ... 41
5.3 Statements ... 46
5.4 Cursor Declarations .. 49
5.5 Cursor Procedures ... 53
5.6 Input Parameter Lists .. 57
5.7 Select Parameter Lists .. 58
5.8 Value Lists And Column Lists .. 61
5.9 IntoClause And Insert_FromClause .. 63
5.10 Value Expressions .. 66
5.11 Search Conditions ... 72

5.11.1 Comparison Predicate ... 74
5.11.2 Between Predicate .. 74
5.11.3 In Predicate .. 74
5.11.4 Like Predicate ... 74
5.11.5 Null Predicate ... 74
5.11.6 Quantified Predicate ... 74
5.11.7 Exists Predicate ... 75

5.12 Subqueries ... 75
5.13 Status Clauses ... 75

Appendix A SAMeDL Standard --------- 77

Appendix B SAI eDLSystem83

Appendix C Standard Support Operations and Specifications85
C. 1 Standard Base Domain Operations .. 85

C.1.I All Domains .. 85
C.1.2 Numeric Domains .. 86
C.1.3 Int and Smallint Domains .. 86
C.1.4 Character Domains ... 86
C. 1.5 Enumeration Domains ... 87
C.1.6 Boolean Functions .. 88
C. 1.7 Operations Available to the Application 88

C.2 Standard Support Package Specifications 89
C.2.1 SQL_Standard ... 89
C.2.3 SQL_.-BooleanPkg ... 90
C.2.4 SQLIntPkg ... 90
C.2.5 SQLSmallintPkg .. 92
C.2.6 SQLRealPkg ... 94
C.2.7 SQLDoublePrecisionPkg ... 96
C.2.8 SQL_..CharPkg ... 96
C.2.9 SQLEnumerationPkg ... 98

Appendix D Transform Chart e 101

Appendix E Glossary 105

Appendix F Syntax Summary-....... 107

Index. 121

Chapter I - Introduction

Chapter 1 Introduction

1.1 Scope

This manual defines the SQL Ada Module Extensions Description Language (SAMeDL).
The language described herein is strongly based on the draft language outlined by Marc Graham
in [SAME].

The description in this manual assumes an underlying working knowledge, on the part of the
reader, of the SAME methodology [SAMEGuide], the SQL standard [SQL], and the Ada
standard [Ada].

1.2 Notation

The notation used in this manual to specify language constructs is based on the Backus-Naur
Form (BNF), which uses grammar rules to specify the syntax of a language. The syntax of a
language defines what sequences of symbols are legal in that language.

A BNF grammar consists of a set of terminal symbols, a set of non-terminal symbols, and a set of
productions (or rewrite rules).

Non-terminal symbols are expanded by rewrite rules. They represent program constructs such as
statements and !xpressions.

Terminal symbols are not expanded by rewrite rules. They represent program symbols such as
reserved words and punctuation marks.

A production is a rewrite rule that allows a non-terminal symbol to be replaced by a (possible
empty) sequence of terminal and non-terminal symbols.

The following naming conventions are used within the grammar rules:

"• Lower case names (abstractmodule, constant_declaration, etc.) represent non-terminal
symbols.

"* Lower case names that are bold-faced (ab, tract, record, etc.) and bold-faced strings
(=, <>, etc.) represent terminal symbols.

" The italicized prefixes Ada and SQL, when appearing in the names of syntactic
categories, indicate that an Ada or SQL syntactic category has been incorporated into
this document. For example, the category Adaidentifier is identical to the category
identifier as described in section 2.3 of [Ada]; whereas the category SQLidentifier is
identical to the category identifier as described in section 5.3 of [SQL].

• Numerical suffixes attached to the names of syntactic categories are used to distinguish

appearances of the category within a rule or set of rules.

The rules of productions are applied as follows:

1. There is a special non-terminal symbol, called the start symbol, from which all legal
sequences are generated.* For example, the start symbol for the SAMeDL grammar is
compilationunit.

Intermetrics, Inc. I

SAMeDL Language Reference Manual

2. Each production is of the form

<non-terminal symbol> ::= <sequence of symbols>

and is interpreted as "the non-terminal on the left hand side may be replaced by the
sequence of symbols on the right hand side." For example

a ::= b c

means that "a" may be replaced by "b c".

3. The symbol 1' may be used on the right hand side of a production to indicate a choice of
replacements. For example

a ::= b I c

means that "a" may be replaced by either "b" or "c".

4. The symbols '[' and ']' signify that the enclosed sequence is optional. For example

a::= b I c

means that "c" is optional, and therefore "a" may be replaced by either "b" or "b c".

5. The symbols '(' and '}' signify the repetition (possibly 0 times) of the enclosed
sequence. For example

a::=b{b)

means that "a" may be replaced by one or more "b" symbols.

1.3 Forward References

In order that a given section give thorough coverage of its subject, it is often necessary to employ
terms, or to refer to grammatical productions, which have not yet appeared in the text. Generally
references to the appropriate chapter or section will appear. For convenience, an alphabetic
summary of the entire grammar of the language appears in Appendix F.

1.4 References

1. [Ada] Reference Manual for the Ada Programming Language, Ada Joint Program Office,
1983.

2. [ESQL] Database Language - Embedded SQL, American National Standards Institute,
X3.168-1989, 1989.

3. [SAME] The SQL Ada Module Description Language, Intermediate Version 3, Software
Engineering Institute/Carnegie Mellon University, 21 November 1991.

4. [SAMEGuide] Guidelines for the Use of the SAME, Marc H. Graham: Software
Engineering Institute/Carnegie Mellon University, Technical Report CMU/SEI-89-TR-16,
May 1989.

2 Intermetrics, Inc.

Chapter 1 - IntroductiQn

5. [SQL] Database Language - SQL, American National Standards Institute, X3.135-1989,
1989.

6. [User] SAMeDL Development Environment User Manual, Intermetrics, Inc., IR-VA-012, 28
February 1992.

1.5 Design Goals And Language Summary

1.5.1 Design Goals

The SQL Ada Module Description Language (SAMeDL) is a Database Programming Language
designed to autninate the construction of software conforming to the SQL Ada Module
Extensions k,5 AME) application architecture (see [SAMEGuide]).

The SAME is a modular architecture. It uses the concept of a Module as defined in [SQL] and
[ESQL]. As a consequence, a SAME-conforming Ada application does not contain embedded
SQL statements and is not an embedded SQL Ada program as defined in [ESQL]. Such a
SAME-conforming application treats SQL in the manner in which Ada treats all other languages:
it imports complete functional modules, not language fragments.

Modular architectures treat the interaction of the application program and the database as a
design object. This results in a further isolation of the application program from details of the
database design and implementation and improves the potential for increased specialization of
software development staff.

Ada and SQL are vastly different languages: Ada is a Programming Language designed to
express algorithms, which SQL is a Database Language designed to describe desired results.
Text containing both Ada and SQL is therefore confusing and difficult to maintain. SAMeDL is
a Database Programming Language designed to support the goals and exploit the capabilities of
Ada with a language whose syntax and semantics is based firmly in SQL. Beyond modularity,
the SAMeDL provides the application programmer the following services:

An abstract treatment of null values. Using Ada typing facilities, a safe treatment of
missing information based on SQL is introduced into Ada database programming. The
treatment is safe in that it prevents an application from mistaking missing information
(null values) for present information (non-null values).

-- Robust status code processing. SAMeDL's Standard Post Processing provides a
structured mechanism for the processing of SQL status parameters.

-- Strong typing. SAMeDL's typing rules are based on the strong typing of Ada, not the
permissive typing of SQL.

-- Extensibility. The SAMeDL supports a class of user extensions. Further, it controls,
but does not restrict, implementation defined extensions.

1.5.2 Language Summary

1.5.2.1 Overview

The SAMeDL is designed to facilitate the construction of Ada database applications that
conform to the SAME architecture as described in ISAMEGuide]. The SAME method involves
the use of an abstract interface, an abstract module, a concrete interface, and a concrete module.

Intermetrics, Inc. 3

SAMeDL Language Reference Manual

The abstract interface is a set of Ada package specifications containing the type and procedure
declarations to be used by the Ada application program. The abstract module is a set of bodies
for the abstract interface. These bodies are responsible for invoking the routines of the concrete
interface, and converting between the Ada and the SQL data and error representations. The
concrete interface is a set of Ada specifications that defined the SQL procedures needed by the
abstract module. The concrete module is a set of SQL procedures that implement the concrete
interface.

Within this document, the concrete module of [SAMEGuide] is called an SQL module and its
contents are given under the headings SQL Semantics. The abstract modules of [SAMEGuide]
are given under the heading Ada Semantics.

1.5.2.2 Compilation Units

A compilation unit consists of one or more modules. A module may be either a definitional
module containing shared definitions, a schema module containing table, view, and privilege
definitions, or an abstract module containing local definitions and procedure and cursor
declarations.

1.5.2.3 Modules

A definitional module contains the definitions of base domains, domains, constants, records,
enumerations, exceptions, and status maps. Definitions in definitional modules may be seen by
other modules.

A schema module contains the definitions of tables, views, and privileges.

An abstract module defines (a portion of) an application's interface to the database: it defines
SQL services needed by an Ad? application program. An abstract module may contain
procedure declarations, cursor declarations, and definitions such as those that may appear in a
definitional module. Definitions in an abstract module, however, may not be seen by other
modules.

1.5.2.4 Procedures and Cursors

A procedure declaration defines a basic database operation. The declaration defines an Ada
procedure declaration and a corresponding SQL procedure. A SAMeDL procedure consists of a
single statement along with an option input parameter list and an optional status clause. The
input parameter list provides the mechanism for passing information to the database at runtime.
A statement in a SAMeDL procedure may be a commit statement, rollback statement, insert
statement query, insert statement values, update statement, select statement or an
implementation-defined extended statement. The semantics of a SAMeDL statement directly
parallel that of its corresponding SQL statement.

SAMeDL cursor declarations directly parallel SQL cursor declarations. In contrast to the
language in [SQL], the procedures that operate on cursors, procedures containing either an open,
fetch, close, update positioned or delete positioned statement, are packaged with the declaration
of the cursor upon which they operate, thereby improving readability. Further, if no procedure
containing an open, fetch or close statement is explicitly given in a cursor declaration, the
language provides such procedures implicitly, thereby improving ease of use.

4 Intermetrics, Inc.

Chapter I - Introduction

1.5.2.5 Domain and Base Domain Declarations

Objects in the language have an associated domain, which characterizes the set of values and
.. applicable operations for that object. In this sense, a domain is similar to an Ada type.

A base domain is a template for defining domains. A base domain declaration consists of a set
of parameters, a set of patterns and a set of options. The parameters are used to supply
information needed to declare a domain or subdomain derived from the base domain. Patterns
contain templates for the generation of Ada code to support the domain in Ada applications.
This code generally contains type declarations and package instantiations. Options contain
information needed by the compiler. Parameters may be used in the patterns and options and
their values may be referenced in other statements.

Base domains are classified according to their associated data class. A data class is either
integer, fixed float, enumeration, or character. A numeric base domain has a data class of
enumeration, and defines both an ordered set of distinct enumeration literals and a bijection
between the enumeration literals and their associated database values. A character base domain
has a data class of character.

1.5.2.6 Other Declarations

Certain SAMeDL declarations are provided as a convenience for the user. For example, constant
declarations name and associate a -domain with a static expression. Record declarations allow
distinct procedures* to share types. An exception declaration defines an Ada exception
declaration with the same name.

1.5.2.7 Value Expressions and Typing

Value expressions are formed and evaluated according to the rules of SQL, with the exception
that the strong typing rules are based on those of Ada. In the typing rules of the SAMeDL, the
domain acts as an Ada type in a system without user defined operations. Strong typing
necessitates the introduction of domain conversions. These conversions are modeled after Ada
type conversions; the operational semantics of the SAMeDL domain conversion is the null
operation or identity mapping. The language rules specify that an informational message be
displayed under circumstances in which this departure from the Ada model has visible effect.

1.5.2.8 Standard Post Processing

Standard post processing is performed after the execution of an SQL procedure but before
control is returned to the calling application procedure. The status clause from a SAMeDL
procedure declaration attaches a status mapping to the application procedure. That status
mapping is used to process SQL status data in a uniform way for all procedures and to present
SQL status codes to the application in an application-defined manner, either as a value of an
enumerated type, or as a user defined exception. SQL status codes not specified by the status
map result in a call to a standard database error processing procedure and the raising of the
predefined SAMeDL exception, SQLDatabaseError. This prevents a database error from
being ignored by the application.

1.5.2.9 Extensions

The data semantics of the SAMeDL may be extended without modification to the language by
the addition of user-defined base domains. For example, a user-defined base domain of DATE
may be included without modification to the SAMeDL.

Intermetrics, Inc. 5

SAMeDL Language Reference Manual

DBMS specific (i.e., non-standard) operations and features that require compiler modifications
(e.g., dynamic SQL) may also be included into the SAMeDL. Such additions to the SAMeDL
are referred to as extensions. Schema elements, table elements, statements, query expressions,
query specifications, and cursor statements may be extended. The modules, tables, views,
cursors, and procedures that contain these extensions are marked (with the keyword extended) to
indicate that they go outside the standard.

1.5.2.10 Default Values in Grammar

Obvious but over-ridable defaults are provided in the grammar. For example, open, close, and
fetch statements are essential for a cursor, but their form may be deduced from the cursor
declaration. The SAMeDL will therefore supply the needed open, close, and fetch procedure
declarations if they are not supplied by the user.

6 Intermetrics, Inc.

Chapter 2 - Lexical Elements

Chapter 2 Lexical Elements
SAMeDL compilation units are sequences of lexical elements, which represent operators,
delimiters, reserved words, identifiers, and numbers. These lexical elements correspond to the
terminal symbols that appear in the grammar rules that define the syntax of SAMeDL.

2.1 Character Set

The only characters allowed in the text of a compilation are the basic characters and the
characters that make up character literals (described in Section 2.4). Each character in the basic
character set is represented by a graphical symbol.

basiccharacter ::= letter I
digit I
special character I
space .character

The characters included in each of the above categories or the basic characters are defined as
follows:

1. letter
ABCDEFGHIJKLMNOPQRSTUVWXYZ

a bcdefghij klmnopqr stuv w x y z

2. digit
0123456789

3. special-characterS()* + ,- ./:; < = >

4. space-character

2.2 Lexical Elements, Separators, And Delimiters

The text of a SAMeDL compilation unit is a sequence of lexical elements. Each lexical element
is either a delimiter, an identifier (which may be a reserved word), a literal, or a comment.

Blanks, tabs, newlines, and comments are considered to be separators provided they do not
appear within other lexical elements (i.e., a comment or a literal). One or more separators are
allowed between adjacent lexical elements; explicit separators are required between adjacent
lexical elements when they could bre interpreted as a single lexical element without separation.

A delimiter is either one of the following special characters

or one of the following compound delimiters each composed of two adjacent special characters

Intermetrics, Inc. 7

SAMeDL Language Reference Manual

Each of the special characters listed for single character delimiters is a single delimiter except if
this character is used as a character of a compound delimiter, or as a character of a comment or
literal.

The remaining lexical element forms are described in the following sections of this chapter.

2.3 Identifiers

Identifiers are used as names and also as reserved words. In general, they take the form of Ada
identifiers (see [Ada] Section 2.3). The exception is the use of SQLidentifiers as the names of
schemas, tables, views, and columns. The major difference between SQLjidentifiers and
Ada_identifiers is that SQL-identifiers are limited to 18 characters in length, whereas
Adaidentifiers are essentially unlimited in length. An SQL reserved word shall not appear at a
point where the grammar specifies an SQL_identifier, and an Ada reserved word shall not appear
at a point where the grammar specifies an Adaidentifier.

identifier ::= letter { [underline] letterordigit }

underline

letter or digit ::= letter I digit

The function SQLNAME that appears in this language is an approximation of an injection (one-
to-one function) from the set of Ada_identifiers to the set of SQLJdentifiers, in the sense that, if
I1 and 12 are distinct Adaidentifiers within a SAMeDL compilation unit, then SQLNANM(II) is
distinct from SQLNAME1(I2).

2.4 Literals And Data Classes

SAMeDL literals follow the SQL literal syntax and are categorized into five data type classes:
character, integer, fixed, float, and enumeration.

literal ::= databaseliteral I enumerationliteral

databaseliteral ::= characterliteral I
integerjliteral I
fixedliteral I
floatliteral

characterliteral ::='({ character)

character ::= implementation defined

integerjliteral ::= digit { digit }

fixed_literal "= integerliteral . integerjliteral I
. integer_literal I
integer_literal.

floatliteral ::= fixedliteral exp [+ I -] integer_literal

exp ::= e I E

enumerationliteral ::= Ada identifier

8 Intermetrics, Inc.

Chapter 2 - Lexical Elements

1. Each literal L has an associated data class, denoted throughout this manual as
DATACLASS(L). In particular, if L is a character, integer, fixed, float, or enumeration
literal, the associated data class for L is character, integer, fixed, float, or enumeration
respectively.

2. Every character_literal CL has an associated length LENGTH(CL) in the sense of [SQL],
section 5.2, rule 2. For any non-character literal, L, LENGTH(L) = NO_LENGTH.

3. Integer, fixed, and float literals are collectively known as numeric literals; furthermore,
integer and fixed literals are known as exact numeric literals while float literals are known
as approximate numeric literals. Every numeric literal NL has a scale, SCALE(NL).- An
integer literal has scale 0. The scale of a fixed literal is the number of digits appearing to
the right of the decimal point within the literal. The scale of a float literal is equal to the
scale of any other float literal and is larger than the scale of any non-float numeric literal.
Any non-numeric literal L, has SCALE(L) = NO_SCALE. See section 3.4 for the
interpretation of enumerationjliterals.

4. The single quote or "tic" character can be included in a characterjliteral by duplicating the
tic. For example, the string 'tic "' represents a character string literal of length 5 containing
the characters: t, i, c, space, and tic.

Examples:

-- the null character string

"M-- character string of length 1 containing "tic"

'a character string' -- character string of length 18

012 12 -- integer literals having the value 12

0.5 .5 1. -- fixed literals

1.OE-5 .5e10 .5E+8 -- float literals

2.5 Comments

Comments are used to document the program for purposes of readability and maintainability.
They do not affect the meaning of the program, and are present solely for the enlightenment of
the human reader.

A comment starts with two adjacent hyphens and extends up to the end of the line. A comment
can appear on any line of a SAMeDL compilation unit.

II.

L

Intermetrics, Inc. 9

SAMeDL Language Reference Manual

2.6 Reserved Words

The identifiers listed below are reserved words and are reserved for special significance in the
language. For readability of this manual, reserved words will appear "boldfaced".

abstract fetch pattern
all for pos
and foreign primary
any from privileges
as function procedure
asc public
authorization grant
avg group raise

record
base having references
between rollback
body image
boolean in scale
by insert schema

into select
check is set
class some
close key status
commit subdomain
connect length sum
constant like
conversion table
count map to
current mark type
cursor max

mun union
data module unique
dblength update
dbms name use
declare named user
default new uses
definition not
delete null values
derived view
desc of
distinct on where
domain open with

option work
end or
enumeration order
escape out
exception
exists
extended

10 Intermetrics, Inc.

Chapter 3 - Common Elements

Chapter 3 Common Elements

3.1 Compilation Units

A compilation unit is the smallest syntactic object that can be successfully processed by the
SAMeDL compiler. It consists of a sequence of one or more modules.

compilation_unit ::= module (module }

module ::= definitionalmodule I schema module I abstractmodule

3.2 Context Clauses

The context clauseis the means by which a SAMeDL module gains visibility to names defined in
other modules. The syntax and semantics of SAMeDL context clauses are similar to the syntax
and semantics of Ada context clauses (see [Ada] 8.4, 10.1.1).

context ::= context-clause (context-clause)

contextclause ::= withclause I with.schemaclause I use-clause

withclause with modulename [asjphrase]
{, module6name [asphrase]};

useclause use modulename {, modulename }

with_schemaclause ::= with schema schemaname [asphrase]
(, schema-name [as_phrase I};

modulename ::=Adaidentifier

schemaname::= SQL_identifier

asphrase ::= as Ada.identifier

1. Consider the following withclause and with_schemaclause:

with M (as N1 1;
with schema S [as N2];

In these clauses, M shall be the name of a definitional module and S the name of a schema
module. The name M of the definitional module is said to be exposed if the as,-phrase is
not present in the contextclause; otherwise the name M is hidden and the name NI is the
exposed name of M. Similar comments apply to S and N2 . The name of a module (see
Sections 4.1, 4.2, and 5.1) is its exposed name within the text of that module. Within the
text of any module, no two exposed module names shall be the same.

2. A module-name in a useclause shall be the exposed name of a definitionalmodule that is
an operand of a prior withclause.

Intermetrics, Inc. 11

SAMeDL Language Reference Manual

3. The scope of a withclause or use_clause in the context of a module is the text of that
module.

4. Only an abstract or schema module context may contain a with_schema_clause.

Note: As a consequence of these definitions, abstract modules cannot be brought into the context
of (withed by) another module.

3.3 Table Names and the From Clause

The table names in insert, update, and delete statements and the from clauses of select
statements, cursor declarations, and subqueries (see Sections 5.3, 5.4, and 8.12) also make
names, in particular column names, visible. The fromclause differs from an SQL,-fromclause
([SQL] 5.20) only in the optional appearance of the as keyword, which is inserted for uniformity
with the remainder of the language.

fromclause ::= from tablejref {, table ref}

tableref ::= tablename [[as] correlationname]

tablename [schemajref.] SOLidentifier

schemaref schemaname I Adaidentifier

correlation-name ::= SQL_identifier

1. If present, schemaref shall be either the schemaname in the authorization clause of the
abstract module in which the tablename appears (see Section 5.1) or the exposed name of
a schema module in the context of the module in which tablename appears (see Section
3.2). In either case, the SQL-identifier shall be the name of a table within that schema
module. If the schemaref is absent from the tablename, then the SQLidentifier shall be
the name of a table within the schema module named in the authorization clause of the
module in which the table name appears.

2. If the correlation name is not present in a table_ref, then the table name in the tableref is
exposed; otherwise the tablename is hidden and the correlationname is exposed. No two
exposed names within a from_clause shall be the same.

3. For the scope of tablenames see [SQL] section 5.20, syntax rule 4; section 8.5, syntax rule
3; and section 8.12, syntax rule 5.

3.4 References

The rules concerning the meaning of references are modeled on those of Ada and those of SQL.
As neither module nesting nor program name overloading occurs, these rules are fairly simple,
and are therefore listed. For the purposes of this clause, an item is either:

"• A definitional, schema, or abstract module (Sections 4.1, 4.2, 5.1)

"* A procedure, a cursor, or a procedure within a cursor (Sections 5.2, 5.4, 5.5)

"* Anything in the syntactic category definition (Section 4.1)

12 !ntermetnics, Inc.

Chapter 3 - Common Elements

• A domain parameter (Section 4..1.1)

0 An enumeration literal within an enumeration (Sections 2.4, 4.1.6)

• An exception (Section 4.1.7)

* An input parameter of a procedure or cursor declaration (Sections 5.2, 5.4, and 5.6)

• A table defined within a schema module (Section 4.2)

* A column defined within a table (Section 4.2)

A location within the text of a module is said to be a defining location if it is the place of:

"* The name of an item with the item's declaration (Note: this includes enumeration
literals within the declaration of an enumeration and domain parameters within the
declaration of a domain)

"• The name of a table in a from_clause

"* The name of the target table of an insert, update, or delete statement

"* A schemaname or modulename in a context_clause

Text locations not within comments that are not defining locations are reference locations. An
identifier that appears at a reference location is a reference to an item. The meaning of that
reference in that location, that is, the identity of the item referenced, is defined by the rules of
this clause. When these rules determine more than one meaning for an identifier, then all items
referenced shall be enumeration literals.

modulereference::= Adaidentifier

schemareference ::= schema-name I Adaidentifier

basedomainreference :modulereference. I Ada_identifier

domain-reference ::= [modulereference .] Adaidentifier

domainparameterreference ::= domain reference.Adaidentifier

subdomainreference ::= [modulereference .] Adaidentifier

enumerationreference ::= [module_reference . I Ada_identifier

enumerationliteralreference [modulereference .] Ada identifier

exceptionreference ::= [modulereference. I Ada-identifier

constantreference "-= [modulereference .] Ada identifier

record-reference ::= [modulereference. I Adaidentifier

procedurereference [module_reference .] Ada identifier

cursor-reference : module-reference.] Ada identifier

Intermetrics, Inc. 13

SAMeDL Language Reference Manual

cursor procjeference ::= [cursorjeference I Ada_identifier

inputreference "'= [procedurejreference.] Adazjdentifier I
[cursor proc_reference] Adaidentifier

statusreference "'= [modulejreference] Adaidentifier

tablereference ::= [schema.refereuice • SQL_identifier

column-name::= SQL_identifier

columnreference ::= [tablereference.] columnname

A reference is a simple name (an identifier) optionally preceded by a prefix: a sequence of as
many as three identifiers, separated by dots. Unlike Ada (see [Ada] sections 8.2, 8.3), it is
necessary to treat the prefix as a whole, not component by component.

For the purposes of this clause, the text of a cursor does not include the text of the procedures, if
any, contained within the cursor. A dereferencing rule is said to determine a denotation for a
reference if it either (i) specifies an item to which the reference refers, or (ii) determines that the
reference is not valid.

Prefix Denotations

The prefix of a reference shall denote one of the following:

"* An abstract module, procedure, cursor or cursor procedure, but only from within the
text of the abstract module, procedure, cursor, or cursor procedure.

"* A table, if the table is in scope at the location in which the reference appears.

"* A domain.

"• A definitional or schema module.

Note: As a consequence of the rule given earlier, that all meanings of an identifier with multiple
meanings must be enumeration literals, a prefix may have at most one denotation or meaning, as
it may not denote an enumeration literal.

Let L be the reference location of prefix P. Let X, Y, and Z be simple names. Then:

1. If L is within the text of a cursor procedure U, then P denotes

a. The cursor procedure U if either

i. P is of the form X and X is the simple name of U; or

ii. P is of the form X.Y; X is the name of the cursor containing L (and
therefore also U); in which case Y shall be the simple name of U else
the prefix is not valid;

iii. P is of the form X.Y.Z; X is the name of the module containing L; Y is
the name of the cursor continuing L (and therefore also U); in which
case Z shall be the simple name of U else the prefix is not valid;

14 Intermetrics, Inc.

Chapter 3 - Common Elements

b. The table T being updated in a cursor-update_statement, if the statement within
the cursor procedure containing L is a cursor_update.statement and either

i. P is of the form X and X is the simple name of T; or

ii. P is of the form X.Y; X is an exposed name for the schema module S
containing the declaration of T and Y is the simple name of T.

2. If rule 1 does not determine a denotation for P, then P denotes

a. The cursor or procedure R, if L is within the text of R and either

i. P is of the formX andX isthe simple name of R; or

ii. P is of the form X.Y; X is the name of the module containing L (and
therefore also R); Y is the simple name of R ;

b. The table T, if L is in the scope of table name T (see Section 3.3) and either

i. P is of the form X and X is the simple name exposed for T; or

ii. P is of the form X.Y; X is the exposed name of the schema module
containing'the table T and Y is a simple name of T.

3. If rules I and 2 do not determine a denotation for P, then P denotes the domain R,

a. If P is of the form X and X is the simple name of R and the declaration of R
appears in the module containing L and precedes L within that module; or

b. P is of the form X.Y; X is the exposed name of the module containing the
declaration of R and Y is the simple name of R.

4. If none of the above rules determines a denotation for P, then P is a simple name that
denotes the

a. Definitional module M if either

i. L is in the scope of a with-clause exposing P as the name of M; or

ii. L is in the definitional module M and P is the name of M.

b. Schema module S if either

i. L is in the scope of a withschemaclause exposing P as the name of S;
or

ii. L is in an abstract module whose authorization clause identifies S and P
is the name of S;

c. Abstract module M if L is within the text of M and P is the name of M;

d. Domain D, if D is declared within a module N such that there is a use clause
for N in the module containing L, and P is the name of D.

C.I

Intermetrics, Inc. 15

SAMeDL Language Reference Manual

Denotations of Full Names

Let L be the location of a reference Id. Then Id is a reference to the item Im if lm is not a
module, procedure, cursor or cursor procedure, or table and

1. Id is of the form P.X where X is the name of Im and P is a prefix denoting

a. A definitional module containing the declaration of 1m;

b. The abstract module, M, in which L appears, and Im is declared in M at a text
location that precedes L;

c. The procedure, cursor, or cursor procedure that contains L, and 1m is an input
parameter to that procedure, cursor, or cursor procedure;

d. A table, in which case Im is a column within that table;

e. A schema module, in which case 1m is a table within that module.

f. A domain, in which case Im is a parameter in that domain.

2. ld is of the form X and X is the name of Im. Then

a. L appears in a cursor, procedure, or cursor procedure and

i. Im is an input parameter to that cursor, procedure, or cursor procedure;

ii. lm is a column of one of the tables in scope of L;

b. If rule (a) does not determine a denotation for ld, then Im is declared in the
module containing L at a location preceding L;

c. If neither rule (a) nor (b) determines a denotation for ld, then Im is declared
within a module M such that the module containing L has a use clause for M.

Note: An item Im is visible at location L if there exists a name ld (either simple or preceded by
a prefix) such that if ld were at location L, then Id would be a reference to Im.

3.5 Assignment Contexts and Expression Conformance

A value expression (see Section 5.10) is said to appear in an assignment context if it is either:

1. The static expression in a constant declaration (see Section 4.1.2);

2. A select parameter (see Section 5.7);

3. A value in an insert value_list (see Section 5.8); or

4. The right hand side of a setitem within an updatestatement (see Section 5.3).

A value expression VE is said to conform to a domain D under the following conditions:

16 Intermetrics, Inc.

Chapter 3 - Common Elements

1. If DOMAIN(VE) * NODOMAIN, then DOMAIN(VE) = D.

2. If DATACLASS(D) is integer or fixed, then DATACLASS(VE) is integer or fixed.

3. If DATACLASS(D) is float, then DATACLASS(VE) is integer, fixed, or float.

4. If DATACLASS(D) is character, then DATACLASS(VE) is character.

5. If DATACLASS(D) is enumeration, then if DOMAIN(VE) = NODOMAIN, then VE
is an enumeration literal in D.

3.6 Standard Post Processing

Standard post processing is the processing that is done after execution of an SQL procedure, but
before control is returned to the calling application. That processing is described as follows:

1. If a status map is attached to the procedure (see Section 5.13), then if that map contains
an sqlcode assignment whose left-hand side is equal to the value of the SQLCODE
parameter, then the Ada procedure's status parameter is set to the value of the right hand
side of the sqlcode-assignment, if that right hand side is an Adaenumerationliteral; if
that right hand side is a raise statement, then the named Adaexception is raised. This
is not considered an error condition in the sense of the next paragraph. In particular,
SQLDatabaseErrorPkg.Process_DatabaseError is not called.

2. If the value of the SQLCODE parameter is not matched by the left hand side of any
sqlcode-assignment in the map attached to the procedure or there is no status map
attached to the procedure and the value of the SQLCODE parameter is other than zero,
then an error condition exists. In this case the parameterless procedure
SQLDatabaseErrorPkg.ProcessDatabaseError is called. The exception
SAMeDLStandard.SQL_DatabaseError is raised.

3.7 Extensions

Extended tables, views, modules, procedures, and cursors allow for the inclusion into the
SAMeDL of DBMS-specific, that is, non-standard, operations and features, while preserving the
benefits of standardization. These DBMS-specific extensions may be verbs, such as connect and
disconnect, that signal the beginning and end of program execution, or functions, such as date
manipulation routines, that extract the month frnm a date. The use of extensions, particularly the
extended keyword, serves to mark those modules, tables, views, cursors, and procedures that go
outside the standard and may require effort should the underlying DBMS be changed.

extendedschema_element ::= imnplementation defined

extendedtableelement ::= implementation defined

extendedstatement ::= implementation defined

extended_queryexpression ::= implementation defined

extendedqueryspecification ::= implementation defined

extendedcursorstatement ::= implementation defined

Intermetrics, Inc. 17

SAMeDL Language Reference Manual

Details concerning implementation defined extended features can be found in [User].

18 Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

Chapter 4 Data Description Language and Data Semantics

"4.1 Definitional Modules

Definitional modules contain declarations of one or more declarations of elements such as
domains, constants, records, enumeration types, and status maps. An Ada library unit package
declaration is defined for each definitional module.

definitionalmodule [context]
[extended
definition module Adaidentifier_1 Is

{ definition)
end [Adajdentifier_-2 1;

definition base_domaindeclaration
domaindeclaration
subdomaindeclaration
constantdeclaration
record_declaration
enumerationdeclaration
exception-declaration
status-map-declaration

When present, Adaidentifier_2 shall equal Adaidentifierl.

Notes:

• No withschemaclause shall appear in the context of a definitional module (see
Section 3.2).

• No two declarations within a definitional module shall have the same name, except for
enumeration literals (see Section 4.1.6).

Ada Semantics

For each definitional module within a compilation unit there is a corresponding Ada library unit
package generated which has the same name as the definitional module. For each definition
within the definitional module, an Ada construct which provides the appropriate Ada semantics
for the definition will be generated and placed within the specification of that package.

Intermetrics, Inc. 19

SAMeDL Language Reference Manual

4.1.1 Base Domain Declarations

Base domains are the basis on which domains are defined. A base domain declaration has three
parts: a sequence of parameters, used in domain declarations to supply information to the other
two parts; a sequence of patterns, used to produce Ada source code in support of a domain; and a
sequence of options, used by the compiler in implementation-defined ways.

basedomaindeclaration ::= [extended I base domain Adaidentifier_1
[(base.domain-parameterjlist)

Is
patterns
options

end [Adaidentifier_-2];

basedomainparameterlist ::= basedomainparameter { ; base.domain.parameter)

1. If present, Ada identifier_2 shall equal Ada identifier1. Ada identifier_1 is the name of
the base domain.

2. The keyword extended may appear in a base_domain_declaration only if it also appears in
the enclosing module declaration.

.4.1.1.1 Base Domain Parameters

basedomain_parameter ::= Adaidentifier dataclass [static-expression] I
map:= pos I
map:= Image

data-class ::= Integer I
character I
fixed I
float I
enumeration

1. The Ada identifiers within the list of basedomain-parameters of a
basedomain_declaration are the names of the parameters that may appear in a
parameterassociationlist within a domaindeclaration based on this base domain (see
section 4.1.3). The static-expression within a basedomain-parameter, when present,
specifies a default value for the parameter. This default value shall be of the correct
datasclass; that is, in the parameter declaration

Id : dcl := expr;

where dcl is a dataclass, DATACLASS(expr) shall be dcl. Further, DATACLASS(Id) is
dcl, whether or not the initializing expression expr is present, and DOMAIN(Id) is
NODOMAIN.

2. A base domain is classified by. its dataclass. That is, an enumeration base domain is a
base domain whose dataclass is enumeration, a fixed base domain is a base domain
whose dataclass is fixed, etc.

3. Every enumeration base domain has two predefined parameters: enumeration and map.
These parameters are special in that the values that are assigned to them by a domain

20 Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

declaration (see section 4.1.3) are not of any of the data classes listed above. The value of
an enumeration parameter is an enumeration_reference (see section 3.4); the value of map
is a databasemapping (see section 4.1.3). A base domain declaration may explicitly
declare a map parameter for the purpose of assigning a default mapping. An enumeration
base domain shall not redefine the predefined base_domain.parameter enumeration.

There are two possible default mappings: pos and image. The value pos specifies that the
Ada predefined attribute 'function 'POS of the Ada type corresponding to the
enumerationreference, which is the enumeration parameter value in the domain
declaration, shall be used to translate enumeration literals to their database encodings.
Similarly for image and the 'IMAGE attribute. See annex A of [Ada] and sections 4.1.3
and 4.3 of this document.

4. Every fixed base domain has a predefined parameter scale whose value is an integer of an
implementation defined range (see [SQL], section 5.5). A fixed base domain shall not
redefine the predefined basedomainparameter scale.

5. Every character base domain has a predefined parameter length whose value is an integer
of an implementation defined range (see [SQL], section 5.5). A character base domain
shall not redefine the predefined basedomain.parameter length.

4.1.1.2 Base Domain Patterns

The patterns portion of a base domain declaration forms a template for the generation of Ada
text, which forms the Ada semantics of domains based on the given base domain.

patterns : pattern }

pattern domainpattem I
subdomain_pattem I
deriveddomainjattem

domainpattem::= domain pattern Is pattemjlist
end pattern;

subdomain-pattem subdomain pattern Is patternlist
end pattern;

deriveddomainpattern ::= derived domain pattern Is pattemlist
end pattern ;

patternjlist::= patternelement (pattern element)

pattemrelement ::= characterliteral

Patterns are used to create the Ada constructs that implement the Ada semantics of a domain,
subdomain, or derived domain declaration (see sect 4.1.3). Patterns are considered templates;
parameters within a pattern are replaced by the values assigned to them either in the domain
declaration, by inheritance, or by default.

For a parameter to be recognized as such in a pattern, it is enclosed in square brackets ([,]). For
the purpose of pattern substitution, a base domain may use a parameter self. When a pattern is
instantiated, self is the name of the domain or subdomain being declared. A base domain may
use a parameter parent for the purpose of pattern substitution in a subdomain-pattern or a

Intermetrics, Inc. 21

SAMeDL Language Reference Manual

deriveddomain-pattern. When such a pattern is instantiated, parent is the name of the parent
domain (see section 4.1.3).

Within a given characterliteral of a pattern, a substring contained in matching curly brackets ({,
1) is an optional phrase. Optional phrases may be nested. An optional phrase appears in the
instantiated template if all parameters within the phrase have values assigned by a domain
declaration; the phrase does not appear when none of the parameters within the phrase has an
assigned value. If some but not all parameters within an optional phrase have values assigned by
a given domain declaration, the declaration is in error.

4.1.1.3 Base Domain Options

options::= (options }

option fundamental I
for wordlist use patternmlist; I
for wordlist use predefined;

fundamental for not null type name use pattem-list;
for null type name use pattem list; I
for data class use dataclass; ;
for dbms type use dbms_type [pattemjlist]; I
for conversion from type to type use converter;

dbmstype Int
Integer
smallint
real
double precision
chat
character
implementation defined

type::= dbms I not null I null

converter function patternlist I
procedure pattermlist. I
type mark

word-list context clause I
null value
nullbearing assign I
notnull-bearing assign

Options are used to define aspects of base domains that are essential to the declaration of
domains within the SAMeDL. The fundamental options are required. Implementations may add
options beyond those given above. The meanings of the fundamental options are given by the
following list.

1. The null and not null type names are the targets of the function AdaTYPE. They are the
names of the types of parameters and parameter components in Ada procedures. See
sections 5.6 and 5.7.

2. The data class option specifies the data class (see section 4. 1. 1. 1) of all objects of any
domain based on this base domain. If BD is a base domain to which the data class dc is

22 Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

assigned by an option in its definition, and if D is a domain based directly or indirectly
(see section 4.1.3) on BD, then DATACLASS(D) = dc. The data class governs the use of
literals with such objects (see sections 5.8 and 5.10).

3. The dbms type of a base domain is the SQLdatajtype (see [SQL] section 5.5) to be used
when declaring parameters of the concrete interface (SQL module) for all objects of
domains based directly or indirectly on the base domain. See sections 5.6, 5.7, and 5.8 of
this document. If the dbms type of a base domain is implementation defined, the keyword
extended shall appear in the declaration of the base domain.

4. An operand of the conversion option is a means of converting non-null data between
objects of the not null-bearing type, the null-bearing type (see section 4.1.3) and dbms type
associated with a domain. A method shall be a function, a procedure, an attribute of a type,
or a type conversion. A means of determining the identity of these methods shall appear in
the options of a base domain. The identity of a method may be given as a pattern
containing parameters.

However, enumerai..'n domains do not have converters between the dbms type and the not
null-bearing type, as the map, parameter predefined for all enumeration domains describes a
conversion method between enumeration and database representations of non-null data.
The method is the application, as appropriate of the function described by the
database-mapping that is the operand of the map parameter association (see sections
4.1.1.1 and 4.1.3).

Additional, implementation-defined options are used to provide information to the SAMeDL
Compiler that is not provided via the fundamental options. The Intermetrics SAMeDL Compiler
makes use of 4 additional options, described by the word list grammar. These options are all
required. The meanings of these options are given by the following list.

1. The context clause option specifies the WITH and/or USE clauses required by packages
that declaredomains using the base domain. Each base domain must rely on at least one of
the SAMeDL standard packag,-s (SQL Char, SQLInt, etc.), so this option is required.
The context clauses are specified as patterns, and the patterns must not include references
to [self], [parent], or any of the base domain parameters. This option must appear once and
only once for each base domain declaration.

2. The null value option provides the SAMeDL compiler with a pattern that can be used as a
null value for all domain declarations based on the base domain declaration.

3. The null bearing assign option designates a function for assigning an object of the base
domain's null-bearing type to another object of the null-bearing type. Either a pattern or
the word predefined may be used to express the conversion function. Use of the word
predefined indicates that the standard operator := should be used to perform the
conversion.

4. The notnull_bearing assign option designates a function for assigning an object of the
base domain's not-null type to another object of the not-null type. Either a pattern or the
word predefined may be used to express the conversion function. Use of the word
predefined indicates that the standard operator := should be used to perform the
conversion.

Intermetrics, Inc. 23

SAMeDL Language Reference Manual

4.1.2 The SAME Standard Base Domains

The predefined definitional module, SAMeDLStandard, contains the declarations of the
predefined SAME Standard Base Domains: SQLInt, SQLSmallint, SQL_,Char, SQLReal,
SQLDoublePrecision, SQL_Enumeration_asChar, and SQL.Enumeration-as Int. The text
of SAMeDLStandard appears in Appendix A.

4.1.3 Domain and Subdomain Declarations

domaindeclaration ::= domain Ada identifier Is new basdomref [not null]
[(parameter-associationlist) ;

subdomaindeclaration ::= subdomain Adaidentifier Is dom_ref [not null]
[(parameterassociationjlist)];

domref ::= domainreference I subdomainreference

basdom-ref ::= domref I base domainreference

parameterassociation_list ::= parameterassociation { , parameterassociation }

parameterassociation Adaidentifier =- staticexpression I
map =- database-mapping I
enumeration => enumerationreference I
scale => staticexpression I
length => static-expression

databasemapping ::= enumerationassociationjlist I pos I Image

enumerationassociation list ::= (enumerationassociation {, enumerationassociation })

enumeration association ::= enumerationliteral =:, databaseliteral

1. Consider the domain declaration:

domain DD Is new EE.....

a. If EE is a basedomain-reference, then EE is said to be the base domain of DD.

b. Otherwise, EE is a domainreference or subdomain reference, the base domain of DD
is defined to be the base domain of EE, DD is said to be derived from EE, and EE is
said to be the parent of DD.

2. Similarly, in the subdomain declaration

subdomaln FF Is GG

the base domain of FF is defined as the base domain of GG, FF is said to be a subdomain of
GG, and GG is said to be the parent of FF.

3. The database type of a domain D, denoted as DBMSTYPE(D), is the value, appropriately
parameterized, of the for dbms type option from the base domain of D. See section
4.1.1.3.

24 Intermetrics, Inc.

ithapter 4 - Data Description Language and Data Semantics

4. The data class of a domain D, denoted DATACLASS(D), is the data class of its base
domain, the value of the for data class option. A domain is numeric if its data class is
numeric.

5. Except for scale, enumeration, length, and m a p, an Adaidentifier within a
parameterassociation shall be the name of a basedomainparameter in the declaration of
the base domain of the domain or subdomain being declared. See section 4.1.1.1.

6. A domain or subdomain D is said to assign the expression E to the parameter P, if

a. the parameterassociation P => E appears in the declaration of D; or

b. (a) does not hold, D is a subdomain or a derived domain, and the parent domain assigns
the expression E to the parameter P; or

c. (a) and (b) do not hold and in the basedomaindeclaration for the base domain of D,

the base~domainparameter

P : class := E

appears.

In all cases, DATACLASS(E) shall be DATACLASS(P) as defined by the declaration of
the base domain. See section 4.1.1.1.

7. If a domain D assigns the expression E to a parameter P, then

* DOMAIN(D.P) = NODOMAIN

* DATACLASS(D.P) = DATACLASS(E)

* LENGTH(D.P) = LENGTH(E)

• SCALE(D.P) = SCALE(E)

8. A domaindeclaration shall assign an expression to each base_domainparameter that
appears in any non-optional phrase

"• of the base domain's domain-pattern, if the declaration is not declaring a derived
domain;

"* of the base domain's derived_domainpattern, if the declaration is the declaration of a
derived domain.

Similar rules govern subdomaindeclarations and subdomain.patterns. See section 4.1.1.2.

9. The scale of a domain D, denoted SCALE(D), is defined by

* if D is not a numeric domain, SCALE(D) = NOSCALE;

• if D is an integer domain, SCALE(D) = 0;

* if D is a float domain, SCALE(D) = a value greater than the scale of any non-float
domain or object;

Intermetrics, Inc. 25

SAMeDL Language Reference Manual

if D is a fixed domain, SCALE(D) = the value assigned by D to the scale
basedomainparameter.

The value assigned to the scale parameter in the declaration of a fixed domain shall be an

integer from an implementation defined range.

10. The length of a domain D, denoted LENGTH(D), is defined by

"* if D is not a character domain, LENGTH(D) = NOLENGTH;

"* if D is a character domain, LENGTH(D) = the value assigned by D to the length
basedomainparameter.

The value assigned to the length parameter in the declaration of a character domain shall be
an integer from an implementation defined range.

11. Any domain_declaration or subdomain_declaration of an enumeration domain shall assign
an enumerationreference to the basedomain-parameter enumeration and a
database_mapping to the basedomain-parameter map. If the map parameter is assigned
an enumerationassociationjlist, then

"* Each enumerationliteral within the enumeration referenced by the
enumeration_reference given by the enumeration parameter shall appear as the
enumeration_literal of exactly one enumeration_association.

"* No database_literal shall appear in more than one enumerationassociation.

Note: These constraints ensure that the database-mapping is an invertible (i.e., one-to-one)
function. That function is used for both compile time and runtime data conversions. See
sections 4.1.1.3 and 4.3.

12. Let D be an enumeration domain or subdomain declaration and let En be the name of the
enumeration referenced by the value assigned by D to the enumeration
base_domainparameter. D is said to assign the expression E to the enumeration literal
El, if D assigns the databasemapping M as the value of the map basedomainparameter
and M

"* is pos, and E = En'Pos(El), or

"* is image, and E = En'Image(El), or

"* is an enumerationassociationlist containing an enumerationassociation of the form
EI=> E

See section 4.1.6.

13. The database-mapping of an enumeration domain or subdomain declaration D should
preserve the ordering implied by that domain's enumerationreference ER. That is, if LI
and L 2 are enumeration literals of ER such that LI occurs before L2 in ER's
enumerationliterallist, then the value assigned to Li by D should be less than the value
assigned to L2 by D.

26 Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

14. A domain or subdomain is said to be not null only if it or any of its parent domains is
declared with the not null phrase. In that case no object of the domain can contain the null
value.

Ada Semantics

An instantiation of a pattern defined for the base domain of the domain being declared, as
described in section 4.1.1.2, shall appear within the Ada package specification corresponding to
the module within which the domaindeclaration appears. If in the domain declaration:

domain DD Is new EE ...

EE is a base_domain_reference, then the domain-pattern is instantiated; if EE is a
domain_reference, the derived_domainpattern is instantiated; for the subdomain declaration

subdomain FF is GG ...

the subdomain-pattern is used.

Examples:

The following examples illustrate the declaration of domains and have been annotated with
references to the appropriate clauses of the language definition. The base domains used in these
examples exist in the predefined definitional module SAMeDL_Standard, which appears in
Appendix A. The constant MaxSQLJnt is declared in the predefined definitional module
SAMeDLSystem (see Appendix B). Both SAMeDL_Standard and SAMeDLSystem are
assumed to be visible, as is the enumeration declaration Colors (see section 4.1.6).

domain Weight Domain Is new SQL_Int (-4.1.3: #1a
First => 0, - 4.1.3: #5 and #8
Last => Max_SQL_Int); - 4.1.3: #5 and #8

domain CityDomain Is new SQL_Char (- 4.1.3: #1a
Length => 15); -- 4.1.3:#5 and #10

domain ColorDomain Is new SQL_EnumerationAsChar (--4.1.3: #1a
enumeration => Colors, - 4.1.3: #11
map => Image); -4.1.3: #11 and #12

domain AutoWeight Is new WeightDomain (-4.1.3: #1b
Last => 10000); -4.1.3: #5

subdomain AutoPart Weight Is Auto-Weight (-- 4.1.3: #2
Last -> 2000); -4.1.3:#5 and #8

The declarations produce the following Ada code:

"-the Ada code below is the instantiation of the domain pattern
-- from the base domain SQL_Int

type Weight_.DomainNot_Null Is new SQLIntNotNull
range 0.. implementationdefined;

type WeightDomain_Type Is new SQL_Int;

Intermetrics, Inc. 27

SAMeDL Language Reference Manual

package WeightDomain..Ops Is now SOL nt...Ops(
WeightDomainType, Weight..DomainiNot-Null);

-- the Ada code below is the instantiation of the domain pattern
-- from the base domain SQLChar

type City..DomainNNBase Is new SQLChar_NotNull;
subtype City_Domain_ NotNull Is City_6omainNN_-Base (1 15);
type CityDomain_-Base Is new SQL._Char;
subtype CityDomain_Type Is CftyDomain Base (City..Domainj-JotNull'Length);
package City_Domain_Ops Is now SQLCharOps

(Cfty_.DomainBase, City...DomainNNBase);

-- the Ada code below is the instantiation of the domain pattemn
-- from the base domain SQLEnumerationAsChar

type ColorDomain-not-null Is new Colors;
package Color_Domain - kg Is new SQLEnumerationPkg (ColorDomain-not-null);
type ColorDomain_Type Is new ColorDomain.Ykg.SQL,_Enumeratin;

-- the Ada code below is the instantiation of the derived domain pattemn
-- from the base domain SQLInt

type Auto_-WeightNot..Null Is new WeightDomainNotNull
range Weight..DomainNotNuirFirst .. 10000;

type AutoWeighLtjype Is new Weight Domain-Type;
package Autofieight..Ops Is new SQLIntLops(

Autok_WeightjType, AutoWeight..Not...Null);

-- the Ada code below is the instantiation of the subdomain pattern
-- from the base domain SQLInt

subtype Auto_Part_Weightj.Jot.Null Is Auto...Weight Not_Null
range Auto...Weight_NotINull'First .. 2000;

type AutoPart WeightjType Is new AutoWeightfType;
package Au~to_'PartWeight_.Ops Is new EiQLIntOps (

AutoPart..Weigh.tjype, AutoPartWeight N~ot Null);

4.1. Constant Declarations

constant-declaration :=constant Ada_identifier [domain-reference]
Is static_expression;

static-..expression ::= value...expression

A static expression is a value expression (see section 5.10) whose value can be calculated at
compile time; i.e., whose leaves are all either literals or constants.

Let K denote the constant declaration

constant C [: D I Is E;

28 Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

1. DATACLASS(K) is DATACLASS(E), the data class of the static expression E.

2. If DATACLASS(K) is enumeration, then D shall be present in the constant declaration
and shall name an enumeration domain of which the static expression E is an enumeration
literal.

3. If DATACLASS(K) is character, then D shall be present.

4. If the domainreference D is not present, then

a. C is a universal constant of type DATACLASS (K).

b. AdaTYPE(K) is an anonymous type, universalT, where T is DATACLASS(K).

c. if DATACLASS(K) is numeric, then SCALE(K) = SCALE(E).

d. DOMAIN(K) = NO_DOMAIN.

5. If the domainreference D is present, then

a. DOMAIN(K) = D and E shall conform to D.

b. If DATACLASS(K) is numeric, then SCALE(K) = SCALE(D), and SCALE(E) shall
not exceed SCALE(D).

c. If DATACLASS(K) is character, then LENGTH(K) = LENGTH(D) and LENGTH(E)
shall not exceed LENGTH(D).

d. AdaTYPE(K) is defined as the type name within D designated as not null bearing.

Ada Semantics

Let VALUE represent the function which calculates the value of a static-expression. Let SE be
a static-expression. VALUE(SE) is given recursively as follows:

1. If SE contains no operators, then

a. If SE is a database-literal, then VALUE(SE) = SE.

b. If SE is an enumerationliteral of domain D, and D assigns expression E to that
enumeration literal, then VALUE(SE) = E.

c. If SE is a reference to the constant whose declaration is given by

constant C [:'D] Is E;

,hen VALUE(SE) = VALUE(E).

d. If SE is a reference to a parameter P from domain D, and D assigns the
expression E to P, then VALUE(SE) = VALUE(E).

2. If SE is D(SEI), where D is a domain name, then VALUE(D(SEI)) = VALUE(SEI).

3. If SE is +SEI (or -SEI), then VALUE(SE) = +VALUE(SEI) (or -VALUE(SEl))

Intermetrics, Inc. 29

SAMeDL Language Reference Manual

4. If SE is SEI op SE2 where op is an arithmetic operator, then VALUE(SE)
VALUE(SEI) op VALUE(SE 2) where op is evaluated according to the rules of SQL.

5. If SE is (SEI) then VALUE(SE) = (VALUE(SEI)).

Again, let K denote the constant declaration

constant C [: D I Is E

Let Q be the Ada representation of VALUE(E). Then the Ada library package specification
corresponding to the module in which the constant declaration K above appears shall have an
Ada constant declaration of the form

C : constant [AdaTYPE (K)] := Q

The type designator AdaTYPE(K) is omitted from this declaration if it is an anonymous type.

Examples:

The following SAMeDL constant declarations

constant Zero Is 0; -- a named number of type universalint
constant Val : ValDomain Is 1; -- a constant value of ValDomain type

will produce the following Ada code:

Zero : constant := 0;
Val constant ValDomain-not null := 1;

4.1.5 Record Declarations

recorddeclaration ::= record Ada_identifier-l [namedphrase] Is
componentdeclarations

end (Adaidentifier_21;

named.phrase ::= named Adaidentifier

component declarations ::= componentdeclaration { component-declaration}

componentrdeclaration ::. component (, component) : domain-reference [not null];

component ::= component-name [dblength [named-phrase]

component.name ::= Adaidentifier

If present, Ada_identifier_2 shall be equal to AdaidentifierI. Ada identifier_1 is the name of

the record.

Let R be a record declaration. Define AdaNAME(R) to be

1. The alias N, if the named-phrase named N appears in the declaration.

2. Row, otherwise.

30 Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

Note: AdaNAME(R) is the default for the name of the row record formal parameter in the
parameter profile of any procedure which uses the declaration R. See Sections 5.2, 5.5 and 5.9.

Ada Semantics

The Ada library unit package specification corresponding to the module within which the
recorddeclaration R appears shall have an Ada record type declaration (called RAda) defined as
follows:

1. The name of the record type RAda shall be Adaidentifier_1.

2. For some integer k, let the componentdeclarations of R be given by the sequence

componentsi : Di [not nuili]

for 1 _• i _< k, where componentsi is given by the sequence

Cij [dblengthij [named Nij]]

where 1 < j < mi for some integer mi. RAda shall be equivalent, in the sense of [Ada]
sections 3.2.10 and 3.7.2, to a record type whose components are given by the sequence

COMPij [DBlengij

where i and j are bound as before and COMPij is given by

Cij : Ti ;

where Ti is an Ada type name determined to be:
a. The not null-bearing type name within the domain Di, if either Di is a not null

only domain or not nulli is present in R;

b. Otherwise the null-bearing type name within the domain Di.

If the optional Jblengthij phrase is specified, then DBlengij appears and takes the form

DBLngNAMEi : AdaIndicatorType

where DBLngNAMEi. is Ni if Ni- appears and is Ci I- DbLength, otherwise;

Adalndicator_Type is the type SQLStandard.Indicator_Type (see [ESQL] 8.a.3).

Examples:

The following SAMeDL record declaration

record PartsRowRecordType named PartsRowRecord Is
PartNumber • PnoDomain not null;

Intermetrics, Inc. 31

SAMeDL Language Reference Manual

Part_Name : Pname_- Domain;
Color • ColorDomain;
Weight_In_Ounce WeightDomain;
City City_Domain;

end PartsRowRecord_Type;

will produce the following Ada code:

type PartsRowRecord_Type Is record - Ada Semantics #1
PartNumber • Pno_Domain-not-null; - Ada Semantics #2
PartName PnameDomainType;
Color . ColorDomainType;
Weight . WeightDomainjype;
City "CityDomainjype;

end record;

4.1.6 Enumeration Declarations

Enumerations are used to declare sets of enumeration literals for use in enumeration domains and
status maps (see sections 4.1.3 and 4.1.8).

enumerationdeclaration ::. enumeration Ada_identifier l Is (enumeration literaL list);

enumeration_literal-list::- enumerationliteral (, enumerationliteral I

1. Adaidentifier_l is the name of the enumeration.

2. Each identifier within an enumerationliteral_list is said to be an enumeration literal of the
enumeration. The enumeration_declaration is considered to declare each of its
enumerationliterals. An enumerationliteral may appear in multiple enumeration
declarations.

Ada Semantics

There shall be, within the Ada package specification corresponding to the module within which
an enumeration appears, an Ada enumeration type declaration of the form

type Ada-identifier_1 Is (enumerationliteral-list)

Note: Ada character literals shall not be used in enumerations.

Examples:

The following are examples of SAMeDL enumeration declarations.

enumeration Sizes Is (small, medium, large, x jarge);
enumeration Sex Is (M, F);
enumeration OperationStatus Is (DiskError,

DataConversionError, Invalid_SQL_Statement, NotFound);
enumeration Colors Is (Purple. Blue, Green, Yellow, Orange, Red, Black, White);

32 Jnterrnetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

For the declarations above, the following Ada code would be produced:

type Sizes Is (small, medium, large, xjlarge);
type Sex is (M, F);
type OperationStatus Is (DiskError,

DataConversionError, Invalid SQL_Statement, NotFound);
type Colors Is (Purple, Blue, Green, Yellow, Orange, Red, Black. White);

4.1.7 Exception Declarations

exceptiondeclaration ::= exception Ada identifier;

Ada_identifier is the name of the exception.

Ada Semantics

There shall be, within the Ada package specification corresponding to the module within which
an exception declaration appears, an exception declaration of the form

Ada_identifier-l : exception;

Examples:

The following are examples of exception declarations.

exception DataDefinitionDoesNotExist;
exception Insufficient_Privilege;

The above declarations produce the following Ada code:

Data_DefinitionDoesNotExist : exception;
InsufficientPrivilege : exception;

4.1.8 Status Map Declarations

The execution of any procedure (see sections 3.7, 5.2, and 5.5) causes the execution of an SQL
procedure. That execution causes a special parameter, called the SQLCODE parameter, to be set
to a status code that either indicates that a call of the procedure completed successfully or that an
exception condition occurred during execution of the procedure. Status maps are used within
abstract modules to process the status data in a uniform way. Each map defines a partial function
from the set of all possible SQLCODE values onto (1) enumeration literals of an enumeration
and (2) raise statements. Note: The function is DBMS specific in that SQLCODE values are not
specified by standard SQL, whereas the enumeration type and exceptions are not specific to any
DBMS.

status._mapdeclaration ::- status Adaidentifier 1
[namedphrase]"
[uses targetenumeration]

Is (sqlcodeassignment (, sqlcodeassignment);

target_enumeration ::. enumerationreference I boolean

Intermetrics, Inc. 33

SAMeDL Language Reference Manual

sqlcode.assignment ::-. staticexpression-list -. enumeration_literal I
static_expressionjlist => raise exception_reference

static-expressionlist ::- staticexpression {, static expression} I
static_expression.. staticexpression

1. Adaidentifier_1 is the name of the status map.

2. A target enumeration of boolean is a reference to the predefined Ada enumeration type
Standard.Boolean.

3. If the optional uses clause is not present, then only sqlcode_.assignments that contain raise
shall be present in the status_map._leclaration.

4. Every Ada_enumeration_literal within an sqlcode-assignment shall be an
Adaenumerationjiteral within the enumeration referenced by the target~enumeration.

5. If E => L (or E => raise X) is an sqlcode-assignment then

• DATACLASS(E) = Integer

* If E' => L' (or E' => raise X') is any other sqlcode-assignment within the
status map.declaration, then.E and E' shall not evaluate to the same integer.

Note: An sqlcode.assignment takes the form of a list of alternatives as found in Ada case
statements, aggregates, and representation clauses. The others choice is not valid for
sqlcode-assignments, however.

Note: SAMeDLStandard contains the definition of a status map Standard.Map, defined as
follows:

status StandardMap named IsFound uses boolean Is
(0 => True, 100 => False);

Standard-Map is the status map for those fetch statements that appear in cursor declarations by

default (see section 5.5). It signals end of table by returning false.

Examples:

status Operation-Map named Result_Of_Operation
uses Operation Status Is(

-600 ..- 699 => DikError,
-500 ..- 599 => Data_Conversion_Error,
-300 .. -499 => Invalid_SQL_Statement,
-101,-110,-113 => raise DataDefinitionDoesNotExist,
-25 -> raise Insufficient_Privilege,
100 => Not_Found);

4.2 Schema Modules

Schema modules contain the database description.

34 Intermetrics. Inc.

Chapter 4 - Data Description Language and Data Semantics

schemamodule "'= [context I
[extended I
schema module SQL_identifier_1 Is

(schema_element)
end [SQL_identdfier2];

schemaelement::- tabledefinition I
view_definition I
SQL,_privilege.definition I
extendedschemaelement

SQL_prdvilegedefinition :" (see [SQL] 6.10)

1. If present, SQL_identifier_2 shall be equal to SQL_identifier_l. SQL._identifierl is the

name of the schemamodule.

2. SQL_identifier_1 shall be different from any other schema module name.

3. An extendedschema_element may appear in a schema_module only if the keyword
extended appears in the associated schema module declaration.

4.2.1 Table Definitions

Table definitions are analogous to SQL table declarations in that they provide information
concerning the underlying structure of a database table within a schema.

tabledefinition - [extended I table SOL_identifier_1 Is
table_element {, table-element)

end [SQL_identilier_21;

tableelement column._definition I
tableconstraintdefinition I
extendedtableelement

column_definition ::= SQL column name [SQL.data.type I
[-SQ_default clause I
[columnconstraint I : domainreference

SQL_default_clause ::= (see [SQL] 6.4)

column_constraint -'= not null SQL uniquespecification I
SQL_reference._specification I
check (searchcondition)

SQL_uniquespecification ::- (see [SQL] 6.6)

SQL_reference_specification :: (see [SQL] 6.7)

tableconstraintdefinition ::- SQL_unique constraint_definition
SQL_referentiaLconstraintdefinition
check_constraintLdefinition

SQL_unique constraint-definition ::= (see [SOL] 6.6)

SQL_referentialconstraint_definition :-: (see (SQL) 6.7)

"b.

, Intermetrics, Inc. 35

SAMeDL Language Reference Manual

checkconstraintdefinition ::= check (search condition)

1. If present, SQLidentifier_2 shall be equal to SQL_identifier.1. SQL_identifierI is the
name of the table and the tabledefinition.

2. The name of the table_definition must be different from the name of any other
tabledefinition or viewdefinition within the enclosing schemamodule.

3. A tabledefinition shall contain at least one columndefinition.

4. Every SQLcolumnname shall be distinct from every other SQLcolumnname within the
enclosing tabledefinition.

5. If the column_constraint is absent from a column_definition, then the domain_reference

shall not be to a not null only domain.

6. For the semantics of not null, see [SQL], sections 6.3 and 6.6; for the semantics of check,

see [SQL], sections 6.3 and 6.8.

7. Suppose that columndefinition CD is of the form

CN [DT] [DC] [CC] : D;

a. The domain of CD, denoted DOMAIN(CD), is D. If DT is present, then conversion
between DBMS_TYPE(D) (see section 4.1.3) and DT shall be legal in both directions
by the rules of SQL ([SQL], section 8.6, syntax rule 3; section 8.7, syntax rule 6; etc.)
unless DBMS_TYPE(D) is an. implementation defined dbmstype (see section 4.1.1.3),
in which case both conversions must be legal by the implementation defined rules.

b. Define DATACLASS(CD) as DATACLASS(D).

c. Define LENGTH(CD) as LENGTH(D)

d. Define SCALE(CD) as SCALE(D).

8. If extended appears in a tabledefinition then extended shall also appear in the associated
schema_module declaration.

9. If an extended-table_element appears in a table_definition, then the keyword extended
shall appear in that table_definition.

4.2.2 View Definitions

viewdefinition : extended) view SQL_identifierl as query-spec
[with check option]

end [SQLjidentifier_21;

queryspec query_specification I extendedquery...speciftcation

36 Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

1. If present, SQL_identifier_2 shall be equal to SQL_identifier_1. SQLidentifier_1 is the
name of the view and the view_definition.

. 2. The name of the view_definition shall be different from the name of any other
tabledefinition or viewdefinition in the enclosing schema module.

3. A query.spec may be an extendedcquery.specification only if the keyword extended

appears in the associated view_definition.

Examples:

with Del-Mod; use DeotMod;
schema module Parts._Suppliers_Database Is

- the Parts table
table P is -4.2.1: #1 and #2

Pno not null PartDomain, -4.2.1: #3 and #4
Pname Pname_Domain, - 4.2.1: #5
Color ColorDomain,
Weight WeightDomain,
City " CityDomain,
unique (Pno)

end P;

-the Suppliers table
table S is -4.2.1: #1 and #2

Sno not null : SnoDomain, -4.2.1: #3 and #4
Sname : SnameDomain, - 4.2.1: #5
Sstatus : SstatusDomain, - "Status" is a reserved word
City : CityDomain,
unique (Sno)

end S;

-the Orders table
table SP Is -4.2.1: #1 and #2

Sno character(5) not null : SnoDomain, - 4.2.1: #3 and #4
Pno character(6) not null : Pno_Domain,
Oty integer : QuantityDomain, - 4.2.1: #5
unique (Sno, Pno)

end SP;

- the PartNumberCity view
view Pno_City as -4.2.2: #1 and #2

select distinct Pno, City
from SP, S

where SP.Sno - S.Sno

end PnoCity;

end PartsSuppliersDatabase;

Intermetrics, Inc. 37

SAMeDL Language Reference Manual

4.3 Data Conversions

The procedures that are described in an abstract module (see Chapter 5) transmit data between an
Ada application and a DBMS. Those data undergo a conversion during the execution of those
procedures. Constants and enumeration literals used in statements are replaced by their database
representation in the form of the statement in the concrete module. This process occurs at
module compile time. Both processes are described in this section.

Execution Time Conversions

The execution time conversions check for and appropriately translate null values; for not null
values, the conversion method identified by the appropriate base domain declaration (see section
4.1.1.3).

Input parameter conversion rule. If the type of an input parameter is null-bearing, then in the
corresponding SQL procedure there is an associated SQLparameterspec~ication to which an
SQL_indicator._parameter has been assigned (see sections 5.6 and 5.8). If, for any execution of
the procedure, the value of the input parameter is null, then the indicator parameter is assigned a
negative value (see [SQL), subsection 4.10.2 and section 5.6, general rule 1). Otherwise, the
indicator parameter shall be non-negative and the SQL parameter shall be set from the input
parameter by the conversion process identified for the base domain. If the type of an input
parameter is not null-bearing, the SQL parameter shall be set from the input parameter by the
conversion process identified for the base domain (see section 4.1.1.3).

Output parameter convetsion rule. For output parameters of procedures containing either
fetch or select statements, this process is run in reverse. Let SP be a select parameter. Then the
corresponding SQL procedure has a data parameter and an indicator parameter parameter
corresponding to SP (see sections 5.2, 5.5, and 5.7). For any execution of the procedure:

" If the indicator parameter is negative, then

-- If the type of the Ada record component COMPAda(SP) (see section -5.2 and
5.5) is null-bearing, then COMPAda(SP) is set to the null value; else

-- If the type of COMPAda(SP) is not null-bearing, the exception
SAMeDLStandard.NullValue_Error is raised.

" If the indicator parameter is non-negative, then the value of COMPAda(SP) is set from
the value of the SQL data parameter by the conversion process identified for the base
domain (see section 4.1.1.3). If the record component DBLengAda(SP) is present (see
section 5.2 and 5.4), then it is set to the value of the indicator parameter.

Compile Time Conversions

The SQL semantics of constants, domain parameters, and enumeration literals (and constants that
evaluate to enumeration literals) used in value lists of insert statements (see section 5.8) and
value expressions (see section 5.10) require that they be replaced in the generated SQL code by
representations known to the DBMS. For enumeration literals, the enumeration mapping is used
(see sections 4.1.1.1, 4.1.1.3, and 4.1.3).

Let V be an identifier. If V is not a reference to a constant or an enumeration literal, then V is
not static and undergoes no compile time conversion.

38 Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

If V is a reference to

* a constant declared by

constant C [: D I Is E;

* a domain parameter param of domain D, and D assigns the expression E to param (see
section 4.1.3)

* or an enumeration literal El from enumeration domain D (see sections 5.3, 5.8, 5.10,
and 5.11), and D assigns the expression E to V,

then V is replaced by the static expression SQLvE(E) (see section 5.10).

Intermetrics, Inc. 39

Chapter 5 - Abstract Module Description Language

Chapter 5 Abstract Module Description Language

5.1 Abstract Modules

abstractmodule "'= [context]
[extended]
abstract module Adaidentifier_l Is

authorization schemareference
(definition)
(procedureor._cursor}

end [Ada_identifier_-2 I;

procedure or cursor ::= cursor_declaration I procedure_declaration

1. If present, Adaidentifier_2 shall be equal to Adaidentifierl. Adaidentifier_1 is the
name of the abstract module.

2. No two of the items (that is, procedures, cursors, and definitions) declared within an
abstract module shall have the same name.

3. For the meaning of "authorization schemareference", see [SQL].

4. A procectureor_cursor may be an extended procedure or an extended cursor only if the
keyword extended appears in the abstract module declaration.

Ada Semantics

For each abstract module within a compilation unit there is a corresponding Ada library unit
package the name of which is the name of the abstract module, that is Adaidentifier_1. The
Ada construct giving the Ada semantics of each procedure, cursor, or definition within an
abstract module is included within the specification of that library unit package.

SQL Semantics

There is an SQL module associated with each abstract module that gives the SQL semantics of
the abstract module. The name of the SQL module is implementation defined. The language
clause of the SQL module shall specify Ada. The module authorization clause is implementation
defined.

5.2 Procedures

This section discusses procedures which are not associated with a cursor. Cursor procedures are
discussed in Section 5.5.

For every procedure declared within an abstract module there is an Ada procedure declared
within the library unit package specification corresponding to that abstract module and an SQL
procedure declared within the corresponding SQL module (see Section 5.1). A call to the Ada
procedure results in the execution of the SQL procedure.

proceduredeclaration '= [extended j
procedure Adaidentifier_1

[inputparameter-list]

Intermetrics, Inc. 41

SAMeDL Language Reference Manual

Is
statement
(status_clause]

statement commitstatement
deletestatement
Insert_statementvalues
insert_statement.query I
rollback_statement I
select_statement I
updatestatement
extendedstatement

1. Ada__identifier_1 is the name of the procedure.

2. An inputparameter._list may appear only in conjunction with statements which take input
parameters or with extended statements. In particular, such lists may not appear in
procedures containing a commit, rollback, or insert values statement.

3. A statement may be an extendedstatement only if the keyword extended appears in the

procedure declaration.

Ada Semantics

Each procedure declaration P shall be assigned an Ada procedure declaration PAda in a manner
which satisfies the following constraints:

"* If P is declared within the declaration of an abstract module M, then PAda is declared
directly within the library unitpackage specification M.

"* The simple name of PAda is the name of P.

The parameter profile of the Ada procedure is defined as follows:

1. If the statement within the procedure is either a delete, insertstatementquery, select or
update statement, then let there be k input parameters (for some k >_ 0) in the input
parameter list given by INP1, INP 2 , ... , INPk. Then the ith parameter in the
Adaformal-part of PAda denoted PARMAda(INPi) for i<=k, takes the following form
(see Section 5.6):

AdaNAME(INPi): In AdaTYPE (INPi)

2. If the statement within the procedure is a select_statement, then the (k+l)st parameter in
the Ada formal part of PAda is a row record. The mode of the row record parameter
shall be in out.

Let IC be the intoclause appearing (possibly by assumption, see section 5.3) in the
selectstatement. Then the name of the row record parameter is PARMRow(IC); the
name of the type of that parameter is TYPERow(IC) (see Section 5.9). If IC contains
the keyword new, then the declarative region containing the declaration of PAda shall
also contain the declaration of TYPERow(IC).

42 Intermetrics, Inc.

Chapter 5 - Abstract Module Description. Language

The names, types and order of the components of the row record parameter are
determined from the select_list within the select-statement. Let that list be given by
SPI, SP 2, ..., SPm. (If the select list takes the form '*' then assume the transformation
described in Section 5.7 has been applied). Then the row record type is equivalent in
the sense of [Ada], section 3.2.10 and 3.7.2, to a record whose sequence of components
is given by the sequence

... COMPAda(SPi) [DBengAda(SPi) I

where COMPAda(SPi) is given by

AdaNAME(SPi) AdaTYPE(SPi)

provided that AdaNAME(SPi) and AdaTYPE(SPj) are defined (see Section 5.7). The
record component COMPAda(SPi) is otherwise undefined. The record component
DBLengAda(SPi) is given. by

DBLngNAME(SPi) : AdalndicatorType

where Ada_IndicatorType is the type SQLStandard.Indicator_.Type (see [ESQL]
section 8.3.a), provided that DBLngNAME(SPi) is defined; otherwise this component
is not present.

Note: COMPAda(SPi) is undefined only if the ith select parameter is improperly
written; whereas DBLengAda(SPi) is undefined only if the ith select parameter does not
have a dblength phrase (see section 5.7).

3. If the statement within the procedure is an insertstatementvalues and it is not the
case that the insertvaluelist is present and consists solely of literals and constants,
then the first parameter is a row record. The mode of the record parameter is in.

Let IC be the insertfrom_clause appearing (possibly by assumption, see section 5.3)
in the statement. Then the name of the row record parameter is PARMRow(IC); the
name of the type of that parameter is TYPERow(IC) (see Section 5.9). If IC contains
the keyword new, then the declarative region containing the declaration of PAda shall
also contain the declaration of TYPERow(IC).

The names, types and order of the components of the record type are determined from
the insert_column_list and insert_value_list. Let CI, C2 Cm be the result of insert
columns appearing in an insert_columnlist such that the corresponding element of the
insertvaluelist is not a literal or constant reference. Then the row record type is
equivalent in the sense of [Ada], section 3.2.10 and 3.7.2, to the record whose ith record
component COMPAda(Ci) for 1 <i < m, is given by

AdaNAME(Ci) : AdaTYPE(Ci)

(see Section 5.8).

4. If the statement within the procedure is an extendedstatement, see section 3.7; for
extended parameter lists, see section 5.6.

Intermetrics, Inc. 43

SAMeDL Language Reference Manual

5. For all procedures, regardless of statement type, if a status_clause appears in the
procedure declaration, then the final parameter is a status parameter of mode out. For
the name and type of this parameter see Sections 4.1.8 and 5.13.

SQL Semantics

Each procedure declaration P shall be assigned an SQL procedure PSQL within the SQL module
for the abstract module in which the procedure appears. PSQL has three parts:

1. An SQLprocedurename. This is implementation defined.

2. A list of SQLkparameterdeclarations. An SQLCODE parameter is declared for every
SQL procedure. Other parameters depend on the type of the statement within the
procedure P.

a. If the statement is a delete, insert-statementquery, select or update statement,
then the SQL parameters derived from the input-parameterlist of the
procedure, as described in Section 5.6, appear in the parameter declarations of
PSQL

b. If the statement is an insertstatement_values, then the SQL parameters are
determined by the subsequence of insert_column-specifications in the
insert_column_list whose corresponding entry in the insertvalue list is a
columnname (thus not a literal or constant reference). See Section 5.8.

c. If the statement is a select_statement, then the SQL parameter declarations for
PSQL are determined by the select_list of the select_statement, as described in
Section 5.7.

d. If the statement is an extended_statement, see section 3.7.

3. An SQL._SQL,_Statement (see [SQL], section 7.3). This is derived from the statement
in the procedure declaration. See Section 5.3.

Interface Semantics

A call to the Ada procedure PAda shall have effects which can not be distinguished from the
following.

1. The procedure PSQL is executed in an environment in which the values of parameters
PARMSQL(INP) and INDICSQL(INP) (see Section 5.6) are set from the value of
PARMAda(INP) (see Ada Semantics above) according to the rule for input parameters
of section 4.3. This holds for every input parameter NP in the input.parameterlist of
the procedure or for every column parameter INP in the insert_column_list of an
insert_statement_values whose corresponding entry in the insert_column_list is an
SQL-columnname (thus not a literal or constantreference). See Section 5.8.

2. Standard post processing, as described in section 3.6, is performed.

3. If the value of the SQLCODE parameter is zero or an implementation defined value
which permits the transmission of data (and which is handled by an
sqlcode-assignment, see section 3.6), and the statement within the procedure is a
selectstatement, then the value of the component of the row record parameter
COMPAda(SPi) and DBLengAda(SPi) are set from the values of the actual parameters

44 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

associated with the SQL formal parameters PARMSQL(SPi) and INDICSQL(SPi) (see
Section 5.7), according to the rule for output parameters of section 4.3..

Examples:

The following are examples of procedure declarations. The first is a declaration of a procedure
with no input parameters.

procedure PartsSuppliers_Commit Is
commit work;

The above declaration produces the following Ada procedure declaration in the abstract
interface.

procedure PartsSuppliersCommit;

The next procedure declaration contains an input parameter and a status clause.

procedure DeleteParts (
InputPname named PartName : PnameDomain)

Is
delete from P

where Pname = Input_Pname
status OperationMap named DeleteStatus

The above declaration produces the following Ada procedure specification in the abstract
interface:

procedure Delete-Parts (
PanName In PnameDomainType;
Delete_Status out OperationStatus);

In a somewhat more complex example, involving a row record, the following SAMeDL
procedure

procedure Insert Redparts Is
Insert Into P (

Pno named PartNumber,
Pname named PartName,
Color,
City)

from Red Parts
values (

.. Pno,
Pname,

L, 'Red',
city);

I .

*Intermetrics, Inc. 45

SAMeDL Language Reference Manual

produces the following Ada declarations:

type InsertRedpartsRow_Type -5.2, Ada semantics #3, 8.9
Is record

PartNumber • PnameDomain._Type; -- 4.2.1
Part_Name PnameDomain_Type;
City CityDomainType;

end record;

procedure InsertRedparts (Red-Parts : In InsertRedpartsRow_Type);

The color of all parts inserted using the InsertRedparts procedure will be red. The weight of all
such parts will be null. See the examples in section 4.2.2. The number, name and city of those
parts are specified at run time.

5.3 Statements

This section describes the concrete syntax of statements other thp- cursor oriented statements,
and defines the text of the SQL statement derived from the text of a SAMeDL statement.

commiLstatement ::= commit work

rollback_statement::= rollback work

deletestatement::= delete from tablename
[where search_condition]

insert_statement query ::= Insert Into table name [(SQL insertcolumnlist)]
queryspecification

insertstatementvalues Insert Into table-name [(insertcolumnjlist)]
[insert_from clause] values [(insertvalue list)]

updatestatement::= update tablename
set set_item (, setjtem)
[where searchcondition]

set_item ::= columnrefe ence = updatevalue

updatevalue ::= null I value-expression

selectstatement ::= select [distinct I all] selectlist
[intoclause]
fromclause
[where searchcondition I
[SQLgroup-bydclause]
[having search-condition]

SQL_insertcolumn_list ::= columnname f, columnname)

SQLgroupbyclause ::= group bycolumnreference {, column reference }

In the following discussion, let ProcName be the name of the procedure in which the statement
appears.

46 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

Ada Semantics

1. If no insertfromclause appears within an insert_statement_values, then the following
clause is assumed:

from Row: now ProcNameRow_Type

If an insert_from_clause which does not contain a recordid appears in an
insert-statementvalues, the recordid

: now ProcName_RowType

is assumed. See Section 5.9.

2. If no into_clause appears within a select_statement, then the following clause is
assumed:

Into Row : now ProcNameRow Type

If an into_clause which does not contain a recordid appears in a select_statement, the
recordid

: new ProcNameRowType

is assumed. See Section 5.9.

3. The following rule applies to both forms of insert statements. If an insertcolumnlist
is not present in such a statement, then a column list consisting of all columns defined
for the table denoted by SQL_.table_name is assumed, in the order in which the columns
were declared ([SQL] 8.7.3).

Note: Use of the empty insert-column_list is considered poor programming practice.
The interpretation of the empty insertcolumnlist is subject to change with time, as the
database design changes.- Programs which use an empty insertcolumn-list may cease
functioning where a program supplying an insertcolumnlist would continue to
operate correctly.

4. If the statement is an insert_statementvalues, then

a. If the insertvaluelist is not present, then a list consisting of the sequence of
column names in the insertcolumn_list is assumed.

b. The insert_column_list and insertvalues_list must conform, as described in
Section 5.8.

5. If the statement is an insertstatemenL.query, then let C1, C2 Cm be the columns
appearing in an SQLinsert_columnlist, and for each I < i < m, let Di be
DBMSTYPE(Ci) (see section 4.2). The select -parameters in the selectlist of the
query-specification shall not specify a named-phrase or a not null phrase; that is, the
select_list shall have the form VE 1, VE2, ..., VEn, for value_expressions, VEi. Then

a .

Intermetrics, Inc. 47

SAMeDL Language Reference Manual

• m = n, that is, the lists have the same length; and

* For each 1 < i < n, VEi shall conform to Di (see section 3.5) and if
DATACLASS(Di) is character, then LENGTH(VEi) shall not exceed
LENGTH(Di).

6. The following applies to update statements. Let

C-v

be a set item within an update_statement. Let D be DOMAIN(C). Then

a. If v is the null literal, then D shall not be defined as a non-null bearing domain.

b. Otherwise, v is a valueexpression. v shall conform to D (see section 3.5) and if
DATACLASS(D) is character, LENGTH(v) shall not exceed LENGTH(D).

SQL Semantics

The text of an SQL statement corresponding to a SAMeDL statement within a procedure is
described below.

1. The SAMeDL and SQL commit and rollback statements are textually identical.

2. The SAMeDL deletestatement is transformed into an SQLk.delete_statement..searched
by applying the transformatioi SQLsc described in Section 5.11 to the search condition
of the where clause, if present. The remainder of the statement is unchanged.

3. The SAMeDL insertstatement-query is transformed into an SQLjinsertstatement by

a. Applying the transformation SQLvE defined in Section 5.10 to the
valueexpression in each select-parameter of the selectlist in the
query-specification.

b. Removing any as keywords, if present, from the fromclause in the
query-specification.

c. Applying the transformation SQLsc described in Section 5.11 to the

search_conditions, if any, in the query-specification.

The remainder of the statement is unchanged.

4. The SAMeDL insert_statementvalues is transformed into an SQL_insertstatement by
transforming the insert_values_list and insert_columnlist as described in Section 5.8,
and dropping the insertfromclause, if present. The remainder of the statement is
unchanged.

5. The SAMeDL update-statement is transformed into an
SQL.update.statementsearched by applying the transformation SQLVE to the value
expressions in the set-items of the statement and by applying the transformation SQLsc
to the search condition, if present. The remainder of the statement is unchanged.

6. The SAMeDL select_statement is transformed into an SQL-select_statement by

48 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

a. Replacing the select_list with the SQL_select_list described in Section 5.7;

b. Inserting an SQL into clause with a target list as specified in Section 5.7, and

removing the intoclause in the statement, if any;

c. Removing any as keywords, if present, from the from_clause.

d. Applying the transformation SQLsc described in Section 5.11 to the search
conditions, if any, in the where and having clauses.

The remainder of the statement is unchanged.

5.4 Cursor Declarations

cursor_declaration :'= [extended J cursor Ada identifier 1
[input-parameterlist I
for

query
[SQOLorderbyqclause I

[Is cursor procedures
end [Ada_identifier_2] ;]

query ::= queryexpression I extendedqueryexpression

query-expression ::= query_term I
query_.expression union [all] queryjerm

queryjerm queryspecification 1
(queryexpression)

query-specification select [distinct I all I selectlist
fromclause
[where search_condition I
[SQL group..by.clause]
[having searchcondition]

SQL_order._byclause "'= order by SQL_sortspeclication {, SQL..sort.specification }

SQL_.sort.specification -:= Unsignedjinteger literal [asc I desc I
columnreference [asc I desc w

1. Ada identifier_1 is the name of the cursor. If present, Ada identifier_2 shall equal
Ada_-identifierl

2. No two procedures within a cursor_declaration shall have the same name.

3. A query may be an extended-query.expression only if the keyword extended appears in
the cursor declaration. If the keyword extended appears in the cursor declaration, then the
keyword extended shall appear in the declaration of the module in which the cursor is
declared.

Ada Semantics

If a cursor named C is declared within an abstract module named M, then there exists within the
Ada package M (see Section 5.1) a subpackage named C. That subpackage shall contain the

Intermetrics, Inc. 49

SAMeDL Language Reference Manual

declarations of the procedures declared in the sequence cursor-procedures. (Note: Some of
those procedures may appear by assumption. See Section 5.5). The text of the procedure
declarations is described in Section 5.5.

If there is no union operator in the query-expression in the cursordeclaration, then the names,
types, and order of the components of any record type used as a row record formal parameter
type in any fetch procedure for this cursor are determined from the select_list as specified for the
select_statement in Sections 5.2 and 5.7. Otherwise, if union is present, the select_lists of all the
query-.expressions in the cursor_declaration shall have the same length. The name and type of
the ith component of the record type is determined by the set of select.-parameters in the ith
location of the selectlists. Let there be m such selectlists and let the set of select-parameters
appearing in the ith location of these lists be denoted by

j SPji} = VEJi [named Idi i [not nullJi i [dblengthii] [named dbIdJi I } lj-<m.

Then

1. These parameters have the same Ada type; that is, AdaTYPE(SPJi) = AdaTYPE(SPki)
for all pairs l1j, k-m (see Section 5.7). The Ada type of the ith parameter, AdaTYPEi,
is that type; in other words, AdaTYPEi = AdaTYPE(SPJi) for any 1•j5.m. (Note: This
is equivalent to the restriction that DOMAIN(VEJi) is the same domain, say DOMAINi,
for all values of j (see Section 5.10) and that either (i) DOMAINi is a not null only
domain, or (ii).not null is specified for either all or none of the parameters).

2. For all pairs j, k such that a named-phrase appears in SPJi and SPki, Idii shall equal ldki.
Then that name, AdaNAMEi, satisfies AdaNAMEi = IdJi for any such j. If there are no
such pairs (that is, if a named phrase appears in none of the select-parameters), then
AdaNAME(VEJi) shall equal AdaNAME(VEki) for all pairs 15j, <kIm and shall not
equal NO_NAME (see Section 5.10). Then AdaNAMEi = AdaNAME(VEJi) for any
j<m.

3. For all pairs j, k such that a dblength phrase appears in SPJi or SPki, then a dblength
phrase shall appear in both SPji and Spki. Furthermore, DBLngNAME(SPJi) shall equal
DBLngNAME(SPki). Then DBLngNAMEi shall be that name. If the dblength phrase
appears in no SPJi for any j, then DBLngNAMEi is said to be null; otherwise,
DBLngNAMEi is undefined.

The type of the row record parameter is equivalent in the sense [Ada] 3.2.10 and 3.7.2, to a
record type whose sequence of components is given by the sequence

. COMPAda(SPi) [DBlengAda(SPi) I

where COMPAda(SPi) is given by

AdaNAME(SPi) : AdaTYPE(SPi)

provided that AdaNAME(SPi) and AdaTYPE(SPi) are defined (see Section 5.7). The record
component COMPAda(SPi) is otherwise undefined. The record component DBLengAda(SPi) is
given by

50 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

DBLngNAME(SPi) Adalndicator_Type

where AdaIndicatorType is the type SQLStandard.lndicatorType (see [ESQL] section

8.3.a), provided that DBLngNAME(SPi) is defined; otherwise this component is not present.

SQL Semantics

A SAMeDL cursor-declaration is transformed into an SQLcursor_declaration as follows.

1. The string "declare" is prepended to the cursor declaration.

2. The inputparameterlist and cursor-procedures are discarded, as is the keyword
cursor and the is ... end bracket. The cursor name Adaidentifier_1 is transformed
into SQLNAME(Adaidentifier_ 1).

3. The string "cursor" is inserted immediately after the transformed cursor name, but
before the keyword for.

4. The select-list is transformed into an SQL-select list as described in Section 5.7.

5. Any as keywords present are removed from the fromclause.

6. The search conditions are transformed using the transform SQLsc of Section 5.11.

The remainder of the declaration is unchanged.

Examples:

Shown below are two examples of cursor declarations: the first contains a simple cursor
declaration, while the second contains a more complex declaration which exercises many of the
features of the syntax. In both cases, the generated Ada code is shown.

The example below is a simple SAMeDL cursor declaration.

cursor Select-Suppliers
for

select Sno, Sname, Sstatus, City dblength
from S

This declaration produces the following Ada code:

package SelectSuppliers Is - 5.4: Ada Semantics
type Row_Type Is record - 5.5, #5 and #8

Sno SnoDomain_Type; - 5.5, #3 and #8
Sname • SnameDomain Type;
Sstatus • SstatusDomainType;
City • City_Domain_Type;
CityDblength : SQLStandard.lndicatorType;

end record;

procedure Open; -- 5.5, #3

Intermetrics, Inc. 51

SAMeDL Language Reference Manual

procedure Fetch (-5.5, #5
Row In out RowType; -- 5.5, #8 and Ada Semantics #3
Is_Found out boolean); - 5.5, #5 and Ada Semantics #6

procedure Close; - 5.5. #4

end SelectSuppliers;

The following is an example of a more complex cursor declaration.

cursor SupplierOperations (
InputCity named SupplierCity City_Domain not null;
Adjustment named Status_Adjustment Sstatus._Domain not null)

for
select Sno named SupplierNumber,

Sname named Supplier_-Name,
Sstatus + Adjustment named AdjustedStatus,
City named SupplierCity

from S
where City = InputCity

Is
procedure OpenSupplierOperations Is

open SupplierOperations;

procedure FetchSupplierTuple Is
fetch Supplierr Operations

Into SupplierRowRecord : new SupplierRowRecord_Type
status Myjhap named FetchStatus;

procedure CloseSupplierOperations Is
close; -- optional 'cursor name' omitfed

procedure Update_- SupplierStatus (
InputStatus named Updated_- Status : SstatusDomain not null;
InputAdjustment named Adjustment : SstatusDomain)

Is
update S

set Sstatus = Input_Status + InputAdjustment
where current of Supplier-Operations;

procedure Delete-Supplier Is
delete from S;
-- optional "where current of 'cursor name" omitted

end Supplier..Operations;

This declaration produces the following Ada code.

package SupplierOperations Is -- 5.4, Ada Semantics
type Supplier_.RowRecordType Is record -- 5.5, Ada Semantics #5 and #8

SupplierNumber SnoDomain_Type; -- 5.5, Ada Semantics #3 and #8
SupplierName SnaameDomainType;

52 Intermetrics, Inc.

Chapter 5 - Abstract Mo~due Description Language

Adjusted_Status Sstatus_Domaink_Type;
SupplieL-Qity City..Domainj~ype;

end record;

procedure OpenSupplierOperations(
Supplier....Cty :In City_D)omain~noL~null; - 5.5, Ada Semantics
StatusAkdjustment :In SstatusD~omain not nujll); - #1, #3, Modes

procedure Fetch-Supplier Tuple (
Supplier_RowRecord In out SupplierRowRecordj~ype; - 5.5
FetchStatus out Operation-§tatusF); - 5.5

procedure CloseSupplierýOperations;

procedure UpdateýSupplier Status (
UpdatedStatus :In SstatusD)omain~notrnull; - 5.5, Ada Semantics #2
Adjustment :In Sstatusý_Domain Type); - 5.5, Ada Semantics

procedure Delete_,Supplier;

end Supplier-Operations;

5.5 Cursor Procedures

cursor .procedures cursor~pmcedure (cursor..procedure)

cursor..procedure :: extenddd I procedure Ada identifier 1
[input~parameter list

Is
cursorl.statement
[status.ý.clause

cursor-statement open...satementI
fetch statementI
close statementI
cursor update statement
cursor'-deleteý-statemnent
extended-cursor-statement

open-statement ::. open[[Ada identifier

fetch_statement :=fetch [Ada__identifier t J[into~qlause

close-statement close [Ada identifier]

cursor-update-statement ::= update table_name
set set Rem (, set temI
[where current of Ada identifierJ

cursor delete statement .- delete-fromn table name
[where current of Ada identifier

I Ada-identifier_1I is the name of the procedure.

Intermetrics, Inc. 53

SAMeDL Language Reference Manual

2. An input-parameterlist may only appear in conjunction with statements that take input
parameters. In particular, such lists may not appear in conjunction with open, close, fetch
and cursor delete statements. Of the cursor procedures, only a cursor._update-statement
may take an input-parameterlist.

3. If no open-statement appears in a list of cursor._procedures, the declaration "procedure
open is open;" is assumed.

4. If no close_statement appears in a list of cursor._procedures, the declaration "procedure
close is close;" is assumed.

5. If no fetchstatement appears in a list of cursor._procedures, the declaration "procedure
fetch is fetch status Standard_Map;" is assumed. See Section 4.1.8.

6. If Ada identifier is present in an open, fetch, close, cursor-update or
cursor d-elete_statement, then it must be equal to the name of the cursor within which the
procedure declaration appears. The meaning of a cursor statement is not affected by the
presence or absence of these identifiers.

7. The restrictions which apply to the set items of a non-cursor update.statement (see Section
5.3), also apply to the set items of a cursorupdate-statement.

8. If no intoclause appears within a fetchstatement, then the following clause is assumed:

into Row :new RowType

If an into-clause which does not contain a record-id appears in a fetchstatement, the
recordid

new Row-Type

is assumed. See Section 5.9.

9. A cursor_statement may be an extendedcursorstatement only if the keyword extended
appears in the cursorprocedure declaration. If the keyword extended appears in the
cursor._procedure declaration, then the keyword extended shall appear within the
declaration of the cursor in which *the cursor._procedure is declared.

Ada Semantics

Each procedure declaration P which appears in or is assumed to appear in a cursor._procedures
list shall be assigned an Ada procedure declaration PAda which satisfies the following
constraints.

* If P is declared within the'declaration of a cursor named C, then PAda shall be declared
within the specification of an Ada subpackage named C.

• The simple name of PAda is the name of P.

The parameter profiles (Ada formal parts) of the Ada procedures depend in part on the statement
within the procedure, as follows:

54 Intermetrics, Inc.

Chapter 5 - Abstract Modide Description Language

1. For openstatements: Let INPi, INP2, ..., INPk k2:0 be the list of input parameters in
the input-parameterlist of the cursor_declaration within which the procedure appears.
Then PARMAda(INPi), the ith parameter of the Ada_formal_part, is of the form

AdaNAME(INPi) : in AdaTYPE(INPi)

for l<i.•k (see Section 5.6).

2. For cursor update-statements: Let INPI, INP2 , ... , INPk k>O be the list of input
parameters in the inputparameter_list of the statement. Then PARMAda(INPi), the ith
parameter of the Adaformal_part, is of the form

AdaNAME(INPi): in AdaTYPE(INPi)

for l<i_<k (see Section 5.6).

3. For fetchstatements: The first parameter is a row record parameter of mode in out.
The names, order and types of the components of the type of this parameter are
described in Sections 5.2 and 5.4. Let IC be the into_clause of the fetchstatement.
Then the name of the row record formal parameter is PARMRow(IC), and the name of
the type of that parameter is TYPERow(IC). See Section 5.9. If IC contains the
keyword new, then the declarative region containing the declaration of PAda shall
contain the declaration of TYPERow(IC).

4. For close and cursorjdeletestatements: There are no parameters to these procedures
(except possibly for the status parameter, see below).

5. For all statement types: if a statusclause referencing a status map that contains a uses
appears in the procedure declaration, then the final parameter is a status parameter of
mode out. For the name and type of this parameter see Sections 4.1.8 and 5.13.

SQL Semantics

Each procedure P which appears in or is assumed to appear in a cursor procedures list shall be
assigned an SQL procedure PSQL within the SQL module for the abstract module within which
the cursor..procedures list appears. PSQL has three parts:

1. An SQL_procedurename. This is implementation defined.

2. A list of SQL,_parameter_declarations. An SQLCODE parameter is declared for every
SQL procedure. Other parameters depend on the type of the statement within the
procedure P.

a. If the statement is an open-statement, then the SQL parameters derived from the
input.parameterlist of the cursor_declaration as described in Section 5.6
appear in the parameter declarations of PSQL.

b. If the statement is a cursor._updatestatement, then the SQL parameters derived
from the input.parameterlist of the cursorupdate-statement as described in
Section 5.6 appear in the parameter declarations of PSQL.

Intermetrics, Inc. 55

SAMeDL Language Reference Manual

c. If the statement is a fetchstatement, then the SQL parameters determined by
the selectlist of the cursor_declaration as described in Section 5.7 appear in the
parameter declarations of PSQL.

The order of the parameters within the list is implementation defined.

3. An SQLSQL.statement. This is derived from the statement in the procedure
declaration, as follows.

a. If the statement is an open.statement, then the SQL..openstatement is "open
SQLNAME(C)", where C is the curser name.

b. If the statement is a closestatement, then the SQL close statement is "close
SQLNAME(C)", where C is the cursor name.

c. If the statement is the cursor_deletestatement

delete from id [where current of C]

then the SQLdeletestatement_positioned is identical, up to the addition of the
where phrase: "where current of SQLNAME(C)", replacing the where phrase
of the cursor_deletestatement, if present.

d. If the statement is the cursorupdate.statement

update id
set set items
[where current of C]

then the SQLupdate-statement-positioned is formed by applying the
transformation SQLvE defined in Section 5.10 to the value expressions in the
set_items of the statement and appending or replacing the where phrase so as to
read "where current of SQLNAME(C)".

e. If the statement is a fetch_statement, then the SQL_fetchstatement is "fetch
SQLNAME(C) into target list" where C is the cursor name and target list is
described in Section 5.7.

Interface Semantics

A call to the Ada procedure PAda shall have effects which can not be distinguished from the
following.

1. The procedure PSQL is executed in an environment in which the values of parameters
PARMSQL(INP) and INDICSQL(INP) (see Section 5.6) are set from the value of
PARMAda(INP) (see Ada semantics above) for every input parameter, INP, in either the
input-parameterlist of the cursordeclaration, for open procedures, or the
input.parameter_list of the procedure itself, for update procedures.

2. Standard post processing, as described in section 3.6 is performed.

3. If the value of the SQLCODE parameter is zero or an implementation defined value
which permits the transmission of data (and which is handled by an
sqlcode-assignment, see section 3.6),, and the statement within the procedure is a

56 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

fetch_statement, then the value of the row record components COMPAda(SPi) and
DBLengAda(SPi), are set-from the values of the actual parameters associated with the
SQL formal parameters PARMSQL(SPi) and INDICSQL(SPi) (see Section 5.7).

5.6 Input Parameter Lists

Input parameter lists declare the input parameters of the procedure or cursor declaration in which
they appear. The list consists of input parameter declarations which are separated with semi-
colons, in the manner of Ada formal parameter declarations.

Each parameter declaration of a procedure P is represented as an Ada_parameterspeciflcation
within the Ada_formal-part of the procedure PAda; each parameter declaration within a cursor
declaration is represented as an Adaparameter._specification within the Ada_formaLpart of the
Ada open procedure. The parameter is also represented as either one or two
SQL-parameter.declarations within the SQL.procedure PSQL. The second SQL parameter
declaration, if present, declares the indicator variable for the parameter ([SQL] 4.10.2).

The order of parameter specification within the Adaformalpart is given by the order within the
input.parameterlist. The order of the SQL._parameter..declarations within the list of
declarations in the SQL procedure is implementation defined.

inputparameterlist ::= (parameter { ; parameter))

inputparameter ::- Ada_identifier_l [namedphrase I:
[In] [out] domainreference [not null]

Ada Semantics

Let INP be a parameter the textual representation of which is given by

idil [named id_2J : [In] I out] [id._3.] idc_4 [not null]

Then idl is the name of the parameter.

The domain associated with INP, denoted DOMAIN(LNP), is the domain referenced by
[id_3.lid_4. Let DOMAIN(INP) = D. Then

"* LENGTH(INP) = LENGTH(D)

"* SCALE(INP) = SCALE(D)

"* DATACLASS(INP) = DATACLASS(D)

The functions AdaNAME and AdaTYPE are defined on parameters as follows:

I. If id_2 is present in the -definition of INP, then AdaNAME(INP) = id_2 otherwise,
AdaNAME(INP) = id-l. For no two parameters, INPI and INP2 , in an input parameter
list shall AdaNAME(INPI) = AdaNAME(LNP 2).

* 2. AdaTYPE(INP) shall be the name of a type within the domain identified by the
domainreference [id3.]id_4. If not null appears within the textual representation of
INP, or the domain identified by the domain-reference does not null only, then
AdaTYPE(INP) shall be the name of the not null-bearing type within the identified

Intermetrics, Inc. 57

SAMeDL Language Reference Manual

domain; otherwise it shall be the name of the null-bearing type within that domain (see
Section 4.1.3).

The optional out may occur only in a parameter that is associated with a procedure or cursor that
is extended. The optional in, however, may be included in any parameter declaration.

Given INP as defined above, define MODE(INP) to be

"* in, if INP either contains (1) the optional in, but not the optional out, or (2) neither in
nor out.

"* out, if INP contains out but not in.

"* in out, if INP contains both in and out.

Then the generated parameter, PARMAda(NP), in the Ada.formal-part is of the form

AdaNAME(INP): MODE(INP) AdaTYPE(INP);

SQL Semantics

Let INP be as given above and let D be the domain referenced by [id_3.]id_4.. The
SQLparameter_declaration PARMSQL(INP) is declared by the following

: SQLNAME(idI) DBMS_TYPE(D)

where DBMSTYPE(D) is as given in Section 4.1.3. If not null does not appear within the
textual representation of INP, and [id..3.]id_4 does not identify a not null only domain, then the
parameter INDICSQL(INP) is defined and has a textual representation given by the
SQL..parameterdeclaration

INDICNAME(INP) indicatortype

where indicator type is the implementation defined type of indicator parameters ([SQL] 5.6.2).
The name INDICNAME(INP) shall not appear as the name of any other parameter of the
enclosing procedure.

5.7 Select Parameter Lists

Select parameter lists serve to inform the DBMS what data are to be retrieved by a select or fetch
statement. They also specify the names and types of the components of a record type - the so
called row record type - which appears as the type of a formal parameter of Ada procedure
declarations for select and fetch statements. Further they specify the column names of viewed
tables (see section 4.2.2).

selectlist ::= * I selectparameter {, selectparameter }

select_parameter::= value expressi6n [named_.phrase J[not null]
[dblength [namedjphrase I1

1. The select list star ("*") is equivalent to a sequence of select parameters described as
follows: Let T1, T2, ..., Tk be the list of exposed table names in the table expression from
clause for the query specification in which the select list appears (see [SQL] Section 5.25).

58 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

Let Ui, for 1 < i < k be defined as SLVi if Ti is of the form Si.Vi (i.e., Si is a schemaname,
and Vi is a table name); otherwise, Ui is Ti. In other words, Ui is Ti with every "." replaced
by an underscore "_". Let Ai,l, Ai,2,...., Ai,mi, be the names of the columns of the table
named Ti. Then the select list is given by the sequence T1.A1 ,1 named Ui_AI,i, T1.A1.2
named U 1_A 1.2 , ..., Ti.Aij named Ui-Ai, ..., Tk.Akm named UkAk,m That is, the
columns are listed in the order in which they were defined (see Section 4.2) within the
order in which the tables were named in the from clause.

Note: This definition differs from that given in [SQL] Section 5.25 (4) in specifying that
the column references are qualified by table name or correlation name. The record type
being described must have well defined component names.

Note: Use of "*" as a select list in an abstract module is considered poor programming
practice. The interpretation of "*" is subject to change with time, as the database design
changes. Programs which use a "*" may cease functioning where a program using a named
select list would continue to operate correctly.

In the following discussion, assume that a select list "*" has been replaced by its equivalent
list, as described above.

2. If the keyword dblength is present, then value-expression shall have the data class
character.

3. Let VE be the value-expression appearing in a select-parameter. DOMAIN(VE) shall not
be NODOMAIN and VE shall conform to DOMAIN(VE).

Ada Semantics

Let SP be a select parameter written as

VE [named idI] [not null] [dblength [named id_2]

SP is assigned the Ada type name AdaTYPE(SP), the Ada name AdaNAME(SP) and the
dblength name DBLngNAME(SP)'as follows:

* Let DOMAIN(VE) = D (see Sectio, 5.10) where D * NODOMAIN. If not null
appears in SP or D is a not null only domain, then AdaTYPE(SP) is the name of the not
null-bearing type name within the domain D; else AdaTYPE(SP) is the name of the
null-bearing type within the domain D.

* If DOMAIN(VE) = NODOMAIN then AdaTYPE(SP) is undefined.

* If id I appears in SP, then AdaNAME(SP) = id I; else AdaNAME(SP) =
AdaN'TAME(VE) (see Section 5.10).

If the dblength phrase appears in SP, then

-- If id_2 is present then DBLngNAME(SP) = id_2

-- else, DBLngNAME(SP) = AdaNAME(SP)_DbLength

Otherwise, DBLngNAME(SP) is undefined.

Intermetrics, Inc. 59

SAMeDL Language Reference Manual

DBLngNAME(SP) and AdaNAME(SP) shall not appear as either DBLngNAME(SPi)
or as AdaNAME(SPi) for any other select-parameter SPi within the select_list that
contains SP.

SQL Semantics

From a select-list, three SQL fragments must be derived:

1. An SQL_select_list, within the select stetement or cursor declaration

2. A list of SQLparameter_declarations.

3. An SQLtarget_list, within a select statement or fetch statement.

An SQL_select_list is derived from a select_list as follows:

"* The select_list * becomes the SQL._select_list *.

"* Otherwise, suppose SP1, SP2,.. ., SPn is a selectlist, where SP1 is given by:

VEi [named idli] [not null]i [dblengthi [named id_2i] I

The SQL_select_list, SP'I, SP'2,.. ., SP'n is formed by setting SP'i to SQLvE(VEi).

For the purpose of defining the SQL-parameterdeclarations and target list generated from a
selectlist, let SPI, SP2 , .. ., SPn be the selectlist supplied or the select_list that replaced the
selectlist * as described above. Let each SPi be be as given above. Then

"• There are two SQL parameters associated with each select-parameter, SPi. They are
PARMSQL(SPi) and INDICSQL(SPi), where the SQL_parameter_declaration declaring
PARMSQL(SPi) is

"SQLNAME(SPi) DBMS_TYPE(DOMAIN(VEi))

and the SQL_parameter_declaration declaring INDICSQL(SPi) is

INDICSQL(SPi) indicator type

where SQLNAMIE(SPi) and INDICSQL(SPi) are SQL_identifiers not appearing else
where.

"* The target list generated from a selectlist is a comma-separated list of
SQLtargetspecifications ([SQL], section 5.6). The ith SQL_targetspecification in
the SQL target list is

SQLNAME (SPi) INDICATOR : INDICNAME(SPi)

Note: All derived target specifications contain indicator parameters, irrespective of the
presence or absence of a not null phrase in the select parameter declaration.

60 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

5.8 Value Lists And Column Lists

insertcolumnlist ::= insertcolumn.specification {, insert.column.specification }

insertcolumn.specification ::= column-name [named-phrase] not null]

insertvaluelist ::= insertvalue {, insert-value

insertvalue ::= null I
constantreference I
literal
columnname I
domainparameterreference

Each columnname within a insertcolumn list shall specify the name of a column within the
table into which insertions are to be made by the enclosing insert-statementvalues. (See
Section 5.3. See also [SQL], 8.7(3).)

Let C be the insert_columnspecification

Col [named id] [not null]

Then AdaNAME(C) is defined to be id, if id is present; otherwise it is Col. Let DOMAIN(C)
= DOMAIN(Col) = D be the domain assigned to the column named Col. If not null appears in
C, or D is a not null only domain, then AdaTYPE(C) is the name of the not null-bearing type
within the domain D; otherwise, AdaTYPE(C) is the null-bearing type within the domain D.

Let CL be the insertcolumnlist C1 ..., Cm ; let IL be the insert_value list V1 ..., Vn. CL and

IL are said to conform if:

1. m=n, that is, the length of the two lists is the same;

2. For each 1<i-<m, if Vi is

a. The literal null, then DOMAIN(Ci) shall not be a not null only domain..

b. A literal or reference to either a constant or a domain parameter, then Vi shall
conform to DOMAIN(Ci) (see section 3.5) and if DATACLASS(DOMAIN(Ci))
is character, then LENGTH(Vi) shall not exceed LENGTH(DOMAIN(Ci)).

c. A columnname, then Vi shall be identical to the columnname in Ci.

Ada Semantics

The insertcolumnlist and insertvalue-list of an insertstatementvalues together define the
components of an Ada record type declaration. The names, types and order of those components
are defined in Section 5.2 on the basis of the functions AdaNAME and AdaTYPE described

-• above. For the name of the record type and its place of declaration, see Section 5.9.

Note: If the insertvalueslist contains no column-names, then the Ada procedure
corresponding to the procedure containing the insertstatementvalues statement of which these
lists form a part does not have a row record parameter. See Section 5.2.

. Intermetrics, Inc. 61

SAMeDL Language Reference Manual

SQL Semantics

A set of SQL parameter declarations is defined from the pair of insertcolumn_list and
insert_valuelist. So again let C 1, ..., Ck be the subsequence of the insert_columnlist such that
the insert_value_list item corresponding to each Ci is a columnname (and therefore neither a
literal nor a constant reference nor a domain parameter reference). Further, let Ci be represented
by the text string

COLi [named idi] [not null]

Then the SQL parameter declarations PARMSQL(Ci) for 1!9<k given by

SQLNAME(Coli) DBMSJTYPE(DOMAIN(Coli))

appear in the list of SQL parameter declarations, where

1. SQLNAME(Coli) is an implementation-defined SQL-identifier which appears nowhere
else.

2. DBMS_TYPE(DOMAIN(Coli)) is as defined in section 4.1.3.

If not null does not appear in Ci and the domain DOMAIN(Coli) is not not null only, then the
parameter INDICNAME(Ci) is defined and the parameter declaration

INDICNAME(Ci) indicatortype

also appears in the list of SQL parameter declarations, where

1. INDICNAMIE(Q) is an implementation-defined SQL_identifier that appears nowhere
else.

2. indicator type is the implementation-defined type of indicator parameters ([SQL]
5.6.2).

An insert-columnlist and insertvaluelist pair are transformed into an SQLinsertcolumnlist
and SQL-insert value list pair as follows:

1. An insertcolumnlist is transformed into an SQL_insertcolumnlist by the removal of
all named.phrase and not null phrases that appear in it.

Note: This implies that the empty insert_column list is transformed into the empty
SQL insert-column list.

2. An insert_value_list is transformed into an SQL-insert value list by replacing each list
element as follows:

a. a literal (including the literal null but excluding any enumeration literal) is
replaced by itself; i.e., it is unchanged;

b. a constant_reference, enumerationliteral, or domain.parameterreference k is
replaced by a textual representation of its database value SQLVE(k) (see Section
5.10).

c. a column_name Col, is replaced by

62 - Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

SOLNAME(COI) [INDICATOR "INDICNAME(Ci)]

where the INDICATOR phrase appears whenever the indicator parameter,

INDICSQL(Ci), is defined (see above).

enclosing the resulting list in parentheses and preceding it with the keyword values.

5.9 Into Clause And Insert From Clause

An into_clause is used within a select_statement or a fetch_statement, and an insertfrom_clause
is used within an insertstatementvalues, to explicitly name the row record parameter of those
statements and/or the type of that parameter.

into_clause ::= Into B

insert_fromclause ::= from into_from_body

intofrom.body::= Adaidentifier 1: record_id I
Adaidentifier_1 I
:record_-i

recordid ::= now Adaidentifier 2 I
record_reference

Ada Semantics

Define the string PARMRow(IC) as follows, where IC is an intoclause or insert_from_clause.

1. If Adaidentifieril appears in IC, then PARMRow(IC) = Ada-identifier_1.

2. Otherwise, if the recordid takes the form of a record_reference referencing the record
declaration R, then PARMRow(IC) = AdaNAME(R) (see Section 4.1.3).

3. Otherwise, PARMRow(IC) = Row.

Define TYPERow(IC) as follows:

1. If record-id has the form "n e w Ada-identifier_2", then TYPERow(IC) =
Ada identifier_2.

2. Otherwise, TYPERow(IC). is the record type referenced by the recordreference.

* Note: The assumptions made about into_clause and insertfromclause in sections 5.3 and 5.5
are sufficient to ensure that every such clause contains a record id, possibly by assumption.
Therefore, the case of a missing recordid need not be considered in the definition of

4. TYPERow(IC) If the recordid is a record_reference, then the names, types, and order of the
j_ components of the record type declaration that would have been generated had the recordid

been "new Ada-identifier" (see sections 5.2, 5.4, and 5.7).

Intermetrics, Inc. 63

SAMeDL Language Peference Manual

Examples:

The following is a set of examples which illustrate various uses of into and from clauses. It is
assumed that each of these procedures is declared within an abstract module, and that any
enumeration, record, and status map declarations used are visible at the point at which each
procedure is declared. In addition, it is assumed that the abstract modules in which these
procedures are declared have direct visibility to the contents of the ParsSupplierDatabase
schema module shown in Section 4.2.2.

The two examples below illustrate the use of a previously declared record object in the into
clauses of select statements. These examples illustrate a possible scenario where an SQL module
contains two select statements for the-same object, namely a part. The first select statement
below exists in a cursor declaration because it has the potential to return more than one record.
The second select statement exists in a procedure, because it can return at most one record from
the table. Since both select statements retrieve the same type of object from the database, they
may share a row record. The row record contains the definition of the part abstraction. To share
a record object, declare the record first, and then reference it in the into clauses of both select
statements.

cursor Parts ByCity
Input.City named PartLocation -CityDomain not null)

for
select Pno named Part_Number not null,

Pname named Part-Name,
Color,
Weight * 16 named Weight_In_Ounces,
City

Into PartsByfCityRow PartsRowRecordType
from P
where City = InputCity

procedure Parts_- By_,Number (
InputPno named PartNumber : PnoDomain not null)

Is
select Pno named PartNumber not null,

Pname named PartName,
Color,
Weight * 16 named Weight_In_Ounces,
City

Into PartsByNumberRow : PartsRowRecordType
from P
where Pno = InputPno
status Operation-Map named PartsByNumberStatus

The above declarations produce the following Ada declarations in the abstract interface.

package PartsByCity Is
procedure Open (Part-Location I In CityDomain not null);

procedure Fetch
PartsByCityRow In out PartsRowRecord_Type;
IsFound out boolean);

procedure Close;

64 Intermetrics, Inc.

Chapter5 - Abstract Module Description Language

end PartsByCity;

procedure PartsByNumber (
ParNumber In Pno_Domain not null;
Parts By NumberRow In out Parts_Row_Record_Type;
PartsByNumberStatus out Operation-Status);

The select procedure below illustrates the use of an into clause to specify the parameters, types,
and names of the generated row record parameter.

procedure Part__NameByNumber (
InputPno named PartNumber : PnoDomain not null)

is
select Pname named Part Name
Into PartNameByNumberRow : new PartName_Row_Record_Type
from P
where Pno = Input-Pno
status OperationMap named PartsByNumberStatus

The above declaration produces the following Ada record type and procedure declarations at the
in the abstract interface.

type PartNameRowRecordType Is record
Part_Name : PnameDomain_Type;

end record;

procedure PartNameByNumber (
PartNumber : In PnoDomain not null;
Part_Name_ByNumberRow :-In out Part_NameRow._RecordType;
PartsByNumberStatus out OperationStatus);

The example declaration below uses the default from clause, which produces a record
declaration in the abstract interface.

procedure Add To Suppliers Is
Insert Into S (Sno, Sname, Sstatus, City)
values
status Opera:ionMap named InsertStatus

The above procedure declaration produces the following Ada code in the abstract interface.

type AddToSuppliersRow_Type Is record
Sno SnoDomainType;
Sname SnameDomain_Type;

- Sstatus SstatusDomain_Type;
City CityDomainType;

end record;

procedure AddTo Suppliers (
Row in AddToSuppliersRow_Type;

Intermetrics, Inc. 65

SAMeDL Language R erence Manual

Insert_Status : out OperationStatus);

This last example illustrates an insert values procedure declaration where all of the values are
literals, meaning that no row record parameter is needed for the procedure declaration at the
interface.

procedure AddToParts Is
Insert Into P (Pno, Pname, Color, Weight, City)
values ('P02367', 'RIGHT FENDER: TOYOTA', LTRED, 25, 'PITTSBURGH')
status Operation-Map named InsertStatus

The above declaration produces the following Ada procedure declaration in the abstract
interface.

procedure AddToParts (Insert_Status : out OperationStatus);

5.10 Value Expressions

The concrete syntax of SAMeDL value expressions differs from the concrete syntax of SQL
value expressions in the following ways:

1. An operand of a SAMeDL value expression may be a reference to a constant, domain
parameter, or enumeration literal defined either in a definitional module or in the
enclosing abstract module.

2. Value expressions are strongly typed; therefore, a domain conversion operation must be
introduced.

value-expression ::= term I
value -expression + term I
value.expression - term

term ::= factor I
term factor I
term I factor

factor::= + I"primary

primary ::= literal
constant-reference
domainparameter-reference
columnreference
input.reference
set function-specificafon n
domainconversion
(valueexpression)

setfunction-specification ::= count () I
distinct set function I
all-set function

distinct set function ::= [avg I max I min I sum I count J (distinct columnreference)

66 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

all set function ::=[avg I max I mln I sum I ([all I value-expression)

domainconversion ::= domainrelerence (value-expression)

Five mappings are defined on value-expressions: AdaNAME, DOMAIN, DATACLASS,
LENGTH, and SCALE.

The mapping AdaNAME calculates the default names of row record components when value
expressions appear in select parameter lists. The range -of AdaNAME is augmented by the
special value NO-NAME, the value of AdaNAME for literals and non-simple names.

The mapping DOMAIN assigns a domain to each well-formed value expression. (Note: If
DOMAIN is not defined on a value expression, then the value expression is not well-formed).
The class of domains is augmented by the special value NO-DOMAIN, the domain of literals
and universal constants.

The mapping DATACLASS assigns a data class to each well-formed value expression. If the
expression is a literal or univergal constant (or composed solely of literals and universal
constants), that is if DOMAIN(VE)= NODOMAIN, then the mapping returns the data class of
the literal or universal constant (see section 2.4).

The mapping LENGTH returns the number of characters in a character string. LENGTH returns
the special value NO-LENGTH on operands whose data class is not character.

The mapping SCALE returns the scale of the result of a numeric expression as determined by
SQL. SCALE returns the special value NO SCALE on operands whose data class is not
numeric.

The mappings AdaNAME, DOMAIN, DATACLASS, LENGTH and SCALE are defined
recursively as follows:

Base Cases:

I. Literals. Let L be a literal. Then AdaNAME(L) = NONAME, DOMAIN(L) =
NODOMAIN. DATACLASS(L), LENGTH(L), and SCALE(L) are as defined in
Section 2.4.

2. References. Let F be an input-reference, a constantreference, a
domainparameter reference, or a columnreference; let G be the object to which F
makes reference. Then

* AdaNAME(F) = F if F is the simple name of G; otherwise, AdaNAME(F) =

NO_NAME.

& DOMAIN(F) = DOMAIN(G),

* DATACLASS(F) = DATACLASS(G),

* LENGTH(F) = LENGTH(G), and

* SCALE(F) = SCALE(G).

Intermetrics, Inc. 67

SAMeDL Language Reference Manual

See sections 5.6, 4.1.4, 4.1.3, and 4.2.1.

Recursive Cases:

1. Set functions. Let SF be a set function and let VE be a value expression.

-- AdaNAME(SF(VE)) = NONAME.

-- If SF is MIN or MAX,.then

-- DOMAIN(SF(VE)) = DOMAIN(VE),

-- DATACLASS(SF(VE)) = DATACLASS(VE)

- LENGTH(SF(VE)) = LENGTH(VE),

- SCALE(SF(VE)) = SCALE(VE)

- If SF is COUNT, then

-- DOMAIN(COUNT(VE)) = DOMAIN(COUNT(*)) = NODOMAIN

-- DATACLASS(COUNT(VE)) = DATACLASS(COUNT(*)) = Integer,

LENGTH(COUNT(VE)) = LENGTH(COUNT(*)) = NOLENGTH

- SCALE(COUNT(VE)) = SCALE(COUNT(*)) = 0 (see Section 2.4).

If SF is SUM, then

- DOMAIN(SUM(VE)) = NO_DOMAIN

- DATACLASS(SUM(VE)) = DATACLASS(VE) and shall be a numeric
data class

- LENGTH(SUM(VE)) = NOLENGTH

-- SCALE(SUM(VE)) = SCALE(VE)

-- If SF is AVG, then

-- DOMAIN(AVG(VE)) = NODOMAIN

- LENGTH(AVG(VE)) = NOLENGTH

-- DATACLASS(VE) shall be numeric and DATACLASS(AVG(VE)) and
SCALE(AVG(VE)) are implementation defined.

2. Domain Conversions. Let D be a domain reference, VE a value expression. Then

-- AdaNAME(D(VE)) = NONAME.

-- DOMAIN(D(VE)) = D provided

68 lntermetrics, Inc.

Chapter 5 - Abstract Module Description Language

a. DATACLASS(D) and DATACLASS(VE) are both numeric. In this
case SCALE(D(VE)) = SCALE(VE), and if SCALE(D) < SCALE(VE)
then a warning message must be generated which will state, in effect,
that the loss of scale implied by this conversion will not occur in the
query execution. The warning message need not be generated if the
value expression is in an assignment context (see section 3.5).
LENGTH(D(VE)) = NOLENGTH in this case.

b. DATACLASS(D) and DATACLASS(VE) are both character. In this
case, LENGTH(D(VE)) = LENGTH(VE), and if LENGTH(D) <
LENGTH(VE) then a warning message must be generated which will
state, in effect, that the loss of length implied by this conversion will not
occur in the query execution. The warning message need not be
generated if the value expression is in an assignment context (see section
3.5). SCALE(D(VE)) = NO-SCALE in this case.

c. DATACLASS(D) and DATACLASS(VE) are both enumeration,
provided that

i. if DOMAIN(VE) NQDOMAIN, then DOMAIN(VE) = D;

ii. if DOMAIN(VE) = NODOMAIN, then the value of VE is an
enumeration literal in the domain D (Note: Thus domain
conversion may play the role played by type qualification in Ada,
[Ada] 4.7).

LENGTH(D(VE)) = NO_LENGTH and SCALE(D(VE)) = NO_SCALE
in this case.

-- DATACLASS(D(VE)) = DATACLASS(VE).

Note: These rules imply that the equalities

-- DATACLASS(DOMAIN(VE)) = DATACLASS(VE)

-- LENGTH(DOMAIN(VE)) = LENGTH(VE)

-- SCALE(DOMAIN(VE)) = SCALE(VE)

do not necessarily hold.

3. Arithmetic Operators. Let VEI, VE2 be value expressions. Let

DOMAIN(VE 1) = D1;
DOMAIN(VE 2) = D2;
DATACLASS(VEI) = Ti;
DATACLASS(VE2) = T2;
SCALE(VEI) = SI;
SCALE(VE 2) = S2;

"Then T1 and T2 shall be numeric classes and

a. For unary operators (+, -)

Intermetrics, Inc. 69

SAMeDL Language Reference Manual __

- AdaNAME([+I-]VEI) = NONAME.

- LENGTH([+(-]VEI) = NO_LENGTH.

DOMAIN([+I-]VEI) = D 1.

DATACLASS([+I-]VEI) = TI.

- SCALE([+I-]VEI) = SI.

b. Let op be any binary arithmetic operator. Then AdaNAME(VE 1 op VE2) =
NONAME. LENGTH(VE 1 op VE2) = NOLENGTH.

c. DATACLASS(VEI op VE2) = max(TI, T2) where float > fixed > integer.

d. Recall that the DOMAIN mapping is defined for a value expression just in case
that value expression is legal. The value expression VE1 op VE2 is a legal
value expression if:

-- D* NOQDOMAIN and D2 * NO_DOMAIN and either

- Ti = T2 = fixed and op is either multiplication or division; or

-DI=D2

- or D I = NO_DOMAIN or D2 = NO_DOMAIN, and

- Ti = T2 = integer, or else

- T1 * integer and then T2 * integer, or else

- T I = fixed and D2 = NODOMAIN and op is either
multiplication or division, or else

- T2 = fixed and DI = NODOMAIN and op is multiplication

-- otherwise, VE I op VE2 is not a legal value expression.

e. if VEI op VE2 is a legal value expression, then DOMAIN(VEI op VE2) =

-- NODOMAIN provided that either

-- DI = D2 = NODOMAIN

-- or DI NODOMAIN and D2 * NODOMAIN and TI= T2 =
fixed and op is either multiplication or division.

- D1 provided that Di * NQODOMAIN

-- D2 otherwise

f. SCALE(VEI op VE2) is given by

-- if op is an additive operator ([+I-]), then the larger of S 1 and S2

70 Intermetrics, Inc.

Chapter S - Abstract Module Description Language

-- if op is multiplication, then the sum of S I and S2

-- if op is division, then it is imnplementation defined.

Note: The following are consequences of the definitions above.

-- AdaNAME(VE) has a value other than NONAME only in the case where VE is a
simple identifier.

-- The product and quotient of any two fixed quantities is always defined as a fixed
quantity with no domain, much like the Ada <universalfixed>. However, whereas in
Ada no operations other than conversion are defined for such quantities, they may be
used anywhere that a literal with fixed data class may be used.

-- The result of a COUNT set function is treated as though it were an integer literal (see
[SQL] 5.8).

-- The result of a SUM set function on a value expression VE is treated as though it were
a literal of the data class DATACLASS(VE) (see [SQL] 5.8).

-- The result of a AVG set function is treated as though it were a literal of an

implementation defined data class and scale (see [SQL] 5.8).

SQL Semantics

The SQL value expression derived'from a SAMeDL value e,.pression VE is formed by removing
all domain conversions, replacing all constants and domain parameters with their values and all
enumeration literals with their database representations (see section 4.3).

Let SQLVE represent the function transforming SAMeDL value-expressions into
SQL valueexpressions. Let VE be a SAMeDL value_expression. SQLvE(VE) is given
recursively as follows:

1. If VE contains no operators, then

a. If VE is a column reference or a database literal, then SQLvE(VE) is VE.

b. If VE is an enumeration literal of domain D, and D assigns expression E to that
enumeration literal (see rule 12 of section 4.1.3), then SQLvE(VE) =
SQLvE(E).

c. If VE is a reference to the constant whose declaration is given by

constant C [- D] Is E;

then SQLvE(VE) = SQLvE(E).

d. If VE is a reference to a domain parameter P of domain D, and D assigns
expression E to P (see rule 6 of section 4.1.3), then SQLvE(VE) = SQLVE(E).

"e. If VE is a reference to the input parameter, INP, and PARMSQL(INP) is ": C T"
(for C an SQL_identifier and T a data type, see section 5.6), then SQLVE(VE) is

C [INDICATOR : INDICNAME(INP)

Intermetrics, Inc. 71

SAMeDL Language Reference Manual

where INDICATOR INDICNAME(INP) appears precisely when
INDICSQL(INP) is defined. See Section 5.6.

2. If VE is SF(VEl) where SF is a set function, then SQLvE(SF(VE1)) is

SF(SQLvE(VEI)).

3. If VE is D(VEI), where D is a domain name, then SQLvE(D(VEl)) is SQLVE(VEI).

4. If VE is +VE 1 (or -VEI) then SQLvE(VE) is +SQLvE(VEI) (or -SQLvE(VEI)).

5. If VE is VEI op VE 2 where op is an arithmetic operator, then SQLvE(VE) is
SQLvE(VEI) op SQLvE(VE2).

6. If VE is (VEI) then SQLvE(VE) is (SQLVE(VEI)).

Note: As a consequence of these definitions, particularly item 3, a domain conversion should be
considered an instruction to a SAMeDL processor that a given expression is well-formed and
should not be considered a data conversion. Although SAMeDL enforces a strict typing
discipline, data conversions are carried out under the rules of SQL, not those of Ada. It is for this
reason that warning messages are given for conversions which lose scale.

5.11 Search Conditions

searchcondition ::= booleanterm I search.condition or boolean_term

booleanterm booleanjfactor I booleanterm and booleanfactor

booleanfactor::= [not I booleanprimary

boolean_pnmary ::= predicate I (searchcondition)

predicate ::= comparsonpredicate
betweenpredicate
in-.predicate
likepredicate
null_predicate
quantifiedpredicate
existspredicate

The concrete syntax of search conditions differs from that of SQL only in that SAMeDL value
expression (Section 5.10) replaces SQL value expression in the definition of the atomic
predicates [SQL] 5.11 through 5.17. In addition, the SAMeDL enforces a strict typing discipline
on the atomic predicates, not enforced by SQL.

For convenience, the following subsections present the syntax for each of the search predicates.
Semantics are defined below in conjunction with [SQL].

The atomic predicates of SQL take a varying number of operands; the comparison predicate
takes two, the between predicate takes three, and the in predicate takes any number. So let {OPI,
OP2, ..., OPm) be the set of operands of any atomic predicate. Each of the OPi is of the form of a
value expression. Therefore, the functions DOMAIN and DATACLASS may be applied to them
(Section 5.10). For an atomic predicate to be well formed, then for any pair of distinct i and j,
l<i, j<-m

72 Intermetrics, Inc.

Chapter 5 - Abstrgct Module Description Language

1. If DOMAIN(OPi) * NODOMAIN and DOMAIN(OPj) * NODOMAIN, then
DOMAIN(OPi) = DOMAIN(OPj), and

2. Exactly one of the following holds:

a. DATACLASS(OPi) = DATACLASS(OPj) = integer;

b. DATACLASS(OPi) = DATACLASS(OPj) = character;

c. Both DATACLASS(OPi) and DATACLASS(OPj) are elements of the set
(fixed, float)

d. DATACLASS(OPi) = DATACLASS(OPP) = enumeration, and there exists
some k, 1gk<m such that

i. DOMAIN(OPk) * NODOMAIN, and

ii. For all 1, l_!2-m, either

1. DOMAIN(OPi) = NODOMAIN, and OPj is an enumeration
literal of the domain DOMAIN(OPk), or

2. DOMAIN(OP0) = DOMAIN(OP0).

SQL Semantics

A SAMeDL search condition is transformed into an SQL-searchcondition by application of the
transformation SQLsc which operates by executing the transformation SQLvE, defined in
Section 5.10, to the value expiessions appearing within the search condition and the
transformation SQLsQ, defined in Section 5.12, to the subqueries in the search condition. In
other words, let P, P1 , and P2 be search conditions, VE, VEI, VE2, ..., VEj be value expressions,
and SQ be a subquery. Then SQLsc(P) is given by

1. If P is of the form: P1 op P2 , where op is one of "and" or "or", then SQLsc(P) is
SQLsc(PI) op SQLsc(P2) ([SQL] 5.18).

2. If P is of the form: "not PI", then SQLsc(P) is not SQLsc(PI) ([SQL] 5.18).

3. If P is of the form: "YEI op VE2 ", where op is an SQL comparison operator ([SQL]
5.11), then SQLsc(P) = SQLvE(VEI) op SQLvE(VE2). If P = VE op SQ, then
SQLsc(P) = SQLvE(VE) op SQLsQ(SQ) ([SQL] 5.11).

4. If P is of the form: "YE [not] between VEI and VE2 " then SQLsc(P) = SQLvE(VE)
[not] between SQLVE(VEI) and SQLvE(VE2) ([SQL] 5.12).

5. If P is of the form: "YE [not] in SQ", then SQLsc(P) = SQLvE(VE) [not] in
"SQLSQ(SQ). If P is of the form: "YE [not] in (VEj, VE2 , ..., VEi, ...)" then SQLsc(P)
= SQLvE(VE) [not] in (SQLvE(VEI), SQLVE(VE2), ..., SQLvE(VEi),...)

6. If P is of the form: "VEI [not] like VE2 escape c" where c is a character, then
SQLsc(P) = SQLvE(VE -) [not] like SQLvE(VE2) escape c ([SQL] 5.14).

Intermetrics, Inc. 73

SAMeDL Language Reference Manual _______________

7. If P is of the form: "C is [not] null" where C is a column reference, then SQLsc(P)=
C is [not] null ([SQL] 5.15). Note: SQLsc is the identity mapping on
SQL,-null-predicates.

8. If P is of the form: WVE op quant SQ" where op is an SQL-comp-op, quant is an
SQL~qualifier (i.e., one of SOME, ANY or ALL), then SQLsc(P) = SQLVE(VE) op
quant SQLsQ(SQ) ([SQL] 5.16).

9. If P is of the form: "exists SQ", then SQLsc(P) = exists SQLSQ(SQ) ([SQL] 5.17).

5.11.1 Comparison Predicate

coniparison~predicate ::= value_expression comp....p val-or..subquery

val-or .subquery :=value-.expression I subquery

comp-.pp ::= = I C> I IC 1 I0 1 = I 21=

5.11.2 Between Predicate

betweenw..predicate ::= value-expression [not I between value-.expression and value-expression

5.11.3 In Predicate

in...predicate ::= vaiue-expression [not] In subqueor.yqralue-.spec-list

subquery-q..r..alue...specjlist ::= subquery I (valuespecjist)

value spec-list ::= value...spec { , value..spec)

value-spec := input~reference I
static-expressionI
user

5.11.4 Like Predicate

likejpredicate mioumn-reference [not I like pattem-stning [escape~clauseI

pattem..string :=value-spec

escapecqlause ::= escape value..spec

5.11.5 Nvill Predicate

null~predicate :=column-reference is [not] null

5.11.6 Quantified Predicate

quantifiedjpredicate ::- value~expression compop quantifier subquery

quantifier:: all1 some I any

74 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

5.11.7 Exists Predicate

existspredicate ::= exists subquery

5.12 Subqueries

The concrete syntax of a subquery ([SQL] 5.24) differs from that of query specifications in that
the select list is limited to at most one parameter. Further, that parameter, when present, takes the
form of a value expression (Section 5.10), not that of a select parameter (Section 5.7), as it is not
visible to the user of the abstract module.

subquery ::= (select [distinct I all] resulexpression
fromclause
where searchcondition I
SQL_group_.byclause I

[having searchcondition])

resultexpression ::= valueexpression I0

Ada Semantics

If, within a subquery, SQ, the result_expression takes the form of a value.expression, VE, then
DOMAIN(SQ) = DOMAIN(VE) and DATACLASS(SQ) = DATACLASS(VE). DOMAIN(SQ)
and DATACLASS(SQ) are undefined when the result-expression takes the form of *.

Note: The fact that DOMAIN(*) is undefined means that such a result-expression can be used
only if the subquery appears within an exists._predicate.

SQL Semantics

The SQL-subquery formed from a SAMeDL subquery, SQ, denoted SQLsQ(SQ), is produced by
removing any as keywords, if present, from the fromclause and applying the transformation
SQLsc to the searchconditions in the where and having clauses, if present.

5.13 Status Clauses

A status clause serves to attach a status map to a procedure and optionally rename the status
parameter.

statusclause ::= status statusreference [named_phrase]

Ada Semantics

If a procedure P has a statusclause of the form

status M [named Id-l]

and the definition of M was given by (see Section 4.1.5):

enumeration T is (L ... Ln);

status M [named Id_2]
uses T

lntermetrics, Inc. 75

SAMeDL Language Reference Manual

is (.. n=>L,....);

(see section 4.1.8), then:

1. The procedure PAda (Sections 5.3 and 5.5) shall have a status parameter of type T.

2. The name of the status parameter of PAda is determined by:

a. If idI is present in the status-clause, than the name of the status parameter
shall be id_1.

b. If rule(a) does not apply, then if id_2 is present in the definition of the status
map M, the name of the status parameter shall be id_2 (see section 4.1.8).

c. If neither rule (a) nor rule (b) apply, then the name of the status parameter shall
be Status.

76 Intermetrics, Inc.

Appendix A - SAMeDL Standard

Appendix A SAMeDLStandard
The predefined SAMeDL definitional module SAMeDLStandard provides a common location
for declarations that are standard for all implementations of the SAMeDL. This definitional
module includes the SAMeDL declarations for the status map StandardMap and for the
standard base domains.

definition module SAMeDLStandard is

exception SQL_Database_Error;
exception NullValue_Error;

-- standard status map
status StandardMap named IsFound uses boolean is

(0 => True, 100 => False);

-- SQLInt is based on the Ada type SQLStandard.lnt
base domain SQLInt

(first integer;
last integer)

is
domain pattern is

lype [selfLNotNull is new SQLIntNotNull'
'{ range [first] .. [last]);'

type [self]_Type is new SQL Int;'
'package [selfLOps is new SQL_lntOps (

'[selfLType, [seIfLNot_Null);'
end pattern;

derived domain pattern is
lype [seffLNotNull is new [parentLNotNull'

'{ range [first].. [last]);'
lype [selfLType is new [parentLType;'
'package [selfLOps is new SQL_mntOps ('

'[selfLType, [selfLNotNull);'
end pattern;

subdomain pattern is
'subtype [selfLNot_Null is [parentLNotNull'

'{ range [first].. [last]);'
'type [selfLType is new [parentLType;'
'package [selfLOps is new SQL_lntOps ('

'[selfLType, [selfLNotNull);'
end pattern;

for not null type name use '[selflNotNull';
for null type name use '[selfLType';
for data class use integer;
for dbms type use integer;

L. for conversion from dbms to not null use type mark;
for conversion from not null to null use function

'(selfLOps.WithNull';
for conversion from null to not null use function

'[seifLOps.WithoutNull';
for conversion from not null to dbms use type mark"

Intermetrics, Inc. 77

SAMeDL Language Reference Manual

for context clause use 'with sqLintpkg; use sqljntpkg;';
for null-bearing assign use [seffLops.assign';
for not null bearing assign use predefined;
for nullvalue use 'null_sqLint';

end SQL_Int;

- SQL_Smallint is based on the Ada type SQLStandard.Smallint
base domain SQLSmallint

(first integer;
last integer)

is
domain pattern is

'type [selfLNoLNull is new SQLSmallintNotNuir
'{range [first] .. [last]);'

'type [self]Type is new SQL_Smallint;'
'package [selffLOps is new SQL_SmallintOps ('

IselfType, [selfLNotNull);'
end pattern;

derived domain pattern is
'type [selfLNoLtNull is new IparentLNotNulr

'{ range [first] .. [last));'
'ype [selfLType is new [parentLType;'
'package [seffLOps is new SQL_SmallintOps ('

¶selfType, [selfLNotNull);'
end pattern;

subdomain pattern is
'subtype [selfLNotNull is [parentLNotNulr

'{ range [first].. [last]);'
'ype [selfLType is new [parentLType;'
'package [selfLOps is new SQL_SmallinLOps ('

IselfType, [selfL.NotNull);'
end pattern;

for not null type name use 'selfLNoLNulr;
for null type name use [selflType';
for data class use integer;
for dbms type use integer;
for conversion from dbms to not null use type mark;
for conversion from not null to null use function

'[selfLOps.WithNull';
for conversion from null to not null use function

lselfLOps.WithoutNuir;
for conversion from not null to dbms use type mark;
for context clause use

'With sql smallintpkg; use sqLsmallintpkg;';
for null bearing assign use ¶selfLops.assign';
for not null bearing assign use predefined;
for null_value use 'nullsqLsmallint';

end SQL Smallint;

-- SQL_Real is based on the Ada type SQL_Standard.Real
base domain SQL_Real

(first float;

78 IntermeM'cs, Inc.

Appendix A - SAMeDL Standard

last float)
is

domain pattern is
'type [selfLNotNull is new SQLRealNoLNulr

'{ range [first] .. [last]);'
'typo [selfLType is new SQL,_Real;'
'package [selfOps is new SQL_ReaLOps ('

'[sef]LType, [selfLNoLNull);'
end pattern;

derived domain pattern is
type [selfLNotNull is new [parentLNotLNulr

'{ range [first] .. [last]);'
'type [selfLType is new [parentLType;'
'package [selflOps is new SQL_ReaLOps ('

'[selfLType, [selfLNotNull);'
end pattern;

subdomain pattern is
'subtype [selfLNoLNull is [parentLNotNulr

'{ range [first] .. [last]);'
'type [selflType is new [parentLType;'
'package [selfLOps is new SQL_ReaLOps ('

'[selflType, [selfLNotLNull);'
end pattern;

for not null type name use Iselfl._NoLNull';
for null type name use '[selfLType';
for data class use float;
for dbms type use real;
for conversion from dbms to not null use type mark;
for conversion from not null to null use function

IselflOps.WithNull';
for conversion from null to not null use function

'[selflOps.Without_Null';
for conversion from not null to dbms use type mark;

for context clause use
'with sqLreal_pkg; use sqLreal_pkg;';

for null bearing assign use '[selfLops.assign';
for not null bearing assign use predefined;
for null-value use 'nulLsqLreal';

end SQL_Real;

- SQL_DoublePrecision is based on the Ada type SQLStandard.DoublePrecision
base domain SQL_DoublePrecision

(first : float;
last : float)

is
domain pattern is

'type [selfLNotNull is new SQL_DoublePrecisionNotNuIr
{ range [first] .. [last]);'

lype [selfLType is new SQL_DoublePrecision;'
package [selfLOps is new SQL_DoublePrecisionOps ('

". Intermetrics, Inc. 79

SAMeDL Language Reference Manual

IselflType, [selfLNotNull);'
end pattern;

derived domain pattern is
'type [seffLNoLNull is new [parentLNoLNuwl'

'(range [first] .. [last]);'
"type [selfLType is new [parentLType;'
'package [seffLOps is new SQL Double_PrecisionOps ('

'[se#LType, [selfLNoLNull);'
end pattern;

subdomain pattern is
'subtype [selfLNotNull is [parentLNot._Nulr

'{ range [first].. [last]);'
"type (selfLType is new [parentLType;'
'package [setfWOps is new SQL DoublePrecisionOps ('

'[selfLType, (seffLNotNull);'
end pattern;

for not null type name use IselflNotLNulr;
for null type name use '[selfLType';
for data class use float;
for dbms type use double precision;
for conversion from dbms to not null use type mark;
for conversion from not null to null use function

'[selfLOps.WithNull';
for conversion from null to not null use function

IselfLOps.WithoutNuir;
for conversion from not null to dbms use type mark;

for context clause use
With sqLdouble-precision-pkg; use sqLdoubleprecision pkg;';

for null bearing assign use '[selfLops.assign';
for not null bearing assign use predefined;
for nullvalue use 'nullsqldoubleprecision';

end SQL_DoublePrecision;

-- SQLChar is based on the Ada type SQL_Standard.Char
base domain SQLChar
is

domain pattern is
lype [self]NNBase is new SQL_CharNotNul;'
'subtype [selfLNotNull is [self]NNBase (1 [length]);'
"type [selfLBase is new SQL_Char;'
'subtype [selfLType is [selfLBase ('

JselfLNoLNulrlength);'
'package [selfLOps is new SQLCharOps ('

IselfLBase, [self]NNBase);'
end pattern;

derived domain pattern is
'ype [self]NNBase is new [parentJNNBase;'

80 Intermetrics, Inc.

Appendix A - SAMeDL ,.Standard

'subtype IselfLNotNull is [self]NNBase (1 .. [length]);'
'ype [selfLBase is new [parentLBase;''subtype [selfLType is [selfLBase ('

[selfLNoLNull"length);'
package [selfLOps is new SQL_CharOps ('

'[self]Base, [selfjNNBase);'
end pattern;

subdomain pattern is
'subtype [self]NNBase is [parent]NNBase;'
'subtype [selfLNotL- Null is [parent]NNBase (1 [length]);'
'type [selfLBase is new [parentLBase;'
'subtype [selfLType is [selfLBase ('

'selfLNotNull"length);'
'package [selfLOps is new SQL_Charjps ('

lselfLBase, [selfjNNBase);'
end pattern;

for not null type name use 'selfLNotLNull';
for null type name use '[sell]Type';
for data class use character;
for dbms type use character '([length])';
for conversion from dbms to not null use type mark;
for conversion from not null to null use function

'[self]Ops.WithNuir;.
for conversion from null to not null use function

IseffLOps.Without_Null';
for conversion from not null to dbms use type mark;

for context clause use 'with sqlcharpkg; use sqlcharpkg;';
for nullbearing assign use predefined;
for null value use 'nullsql-char;

end SQL_Char;

- SQL_Enumeration As Int is based on the Ada type SQL_Standard.lnt
base domain SQL_Enumeration_As_Int

(map := pos)
is

domain pattern is
lype [selflNot.Null is new [enumeration];'
'package [selfLPkg is new SQL_EnumerationPkg ('

'[self]_noLnul)'
type [self]Type is new [selfLPkg.SQLEnumeration;'

end pattern;

derived domain pattern is
'type [selfLNoLNull is new [parentLNotNull;'
type (selfLType is new [parentLType;'

end pattern;

subdomain pattern is
'subtype [selfLNotNull is [parenILNot_Null;'
'subtype [selfLType is [parentLType;'

end pattern;

for not null type name use 'IselfLNotNull';

Intermetrics, Inc. 81

SAMeDL Language Reference Manual

for null type name use IselfLType';
for data class use enumeration;
for dbms type use integer;
for conversion from not null to null use function

'With_.Nuir;
for conversion from null to not null use function

'WithoutNuir;

for context clause use 'with sqLenumerationpkg;';
for not null bearing assign use predefined;
for nulLbearing assign use 'Assign';
for null value use 'nulLsqLenumeration';

end SQL_EnumerationAsInti

- SQL_EnumerationAsChar Is based on the Ada type SQL_Standard.Char
base domain SQL.._Enumeration_AsChar

(width :integer;
map := image)

is
domain pattern is

'type [selfLNoLNull is new [enumeration];'
'package [selfLPkg is new SQL_EnumerationPkg ('

IselfLnoLnull)'
type [selfLType is new [selfLPkg.SQLEnumeration;'

end pattern;

derived domain pattern is
lype [selfLNoLtNull is new [parentLNotNull;'
lype [selfLType is new [parentLType;'

end pattern;

subdomain pattern is
'subtype [selfLNotNull is [parentLNoLNull;'
'subtype [selfLType is oparentLType;'

end pattern;

for not null type name use IseffLNoLNulr;
for null type name use IselfLType';
for data'class use enumeration;
for dbms type use character '([width])';
for conversion from not null to null use function

'With_Nuir;
for conversion from null to not null use function

WithoutNuir;

for context clause use 'with sqLenumeration.pkg;';
for notnull bearing assign use predefined;
for nuiLbearing assign use 'Assign';
for null value use 'nulLsqLenumeration';

end SQL_EnumerationAsChar;

end SAMeDLStandard;

82 Intermetrics, Inc.

Appendix B - SAMeDL System

Appendix B SAMeDL_System
The predefined SAMeDL definitional module SAMeDLSystem provides a common location
for the declaration of implementation-defined constants that are specific to a particular
DBMS/Ada compiler platform.

definition module SAMoDLSystem is

-- Smallest (most negative) value of any integer type
constant Minlnt is implementation defined;
-- Largest (most positive) value of any integer type
constant Max-lnt is implementation defined;

- Smallest value of any SOLInt type
constant Min_SQL_lnt is implementation defined;
-- Largest value of any SOLInt type
constant Max_SQL_tnt is implementation defined;

-- Smallest value of any SQL_Smallint type
constant Min_SQL_Smallint is implementation defined;
-- Largest value of any SQL_Smallint type
constant Max_SQL_Smallint is implementation defined;

- Largest value allowed for the number of significant decimal
- digits in any floating point constraint
constant Max-Digits is implementation defined;

-- Largest value allowed for the number of significant decimal
digits in any SQLReal floating point constraint

constant MaxSQLRealDigits is implementation defined;

-- Largest value allowed for the number of significant decimal
-- digits in any SQL_DoublePrecision floating point constraint
constant Max_SQL_DoublePrecision.Digits is implementation defined;

-- Largest value allowed for the number of characters in a
-- character string constraint
constant MaxSQLCharLength is implementation defined;

-- SQL Standard value for successful execution of an SQL DML statement
constant Success is 0;
-- SQL Standard value for data not found
constant NotFound is 100;

end SAMeDLSystem;

Intermetrics, Inc. 83

Appendix C - Standard Support Operations and Specifications

Appendix C Standard Support Operations and
Specifications
The following two sections discuss the SAME standard support packages. The first section
describes how they support the standard base domains, and the second section lists their Ada
package specifications.

C.I Standard Base Domain Operations

The SAME standard support packages encapsulate the Ada type definitions of the standard base
domains, as well as the operations that provide the data semantics for domains declared using
these base domains. This section describes the nature of the support packages, namely the Ada
data types and the operations on objects of these types.

The SQL standard package SQLStandard contains the type definitions for a DBMS platform
that define the Ada representations of the concrete SQL data types. A standard base domain
exists in the SAMeDL for each type in SQL..Standard (except for SQLCodeType), and these
base domains are each supported by one of the SAME standard support packages, In addition to
the above base domains, two standard base domains exist that provide data semantics for Ada
enumeration types.

Each support package defines a not null-bearing and a null-bearing type for the base domain.
The not null-bearing type is a visible Ada type derived from the corresponding type in
SQLStandard with no added constraints. This type provides the Ada application programmer
with Ada data semantics for data in the database. The null-bearing type is an Ada limited private
type used to support data semantics of the SQL null value. In particular, the null-bearing type
may contain the null value; the not null-bearing type may not.

Domains are derived from base domains by the declaration of two Ada data types, derived from
the types in the support packages, and the instantiation of the generic operations package with
these types. The type derivations and the package instantiation provide the domain with the
complete set of operations that define the data semantics for that domain. These operations are
described below, grouped by data class.

C.1.1 Alt Domains

All domains derived from the standard base domains make an Assign procedure available to the
application because the type that supports the SQL data semantics is an Ada limited private type.
For the numeric domains, this procedure enforces the range constraints that are specified for the
domain when it is declared. The Ada Constraint Error exception is raised by these procedures
if the value to be assigned falls outside of the specified range.

A parameterless function named NullSQL_<type> is available for all domains as well. This
function returns an object of the null-bearing type of the appropriate domain whose value is the
SQL null value.

Every domain has a set of converiion functions available for converting between the not null-
bearing type and the null-bearing type. The function With Null converts an object of the not
null-bearing type and the null-bearing type. The function WithoutNull converts converts an
object of the null-bearing type to an object of the no null-bearing type. Without-Null will raise

Intermetrics, Inc. 85

SAMeDL Language Reference Manual

the Null ValueError exception if the value of the object that it is converting is the SQL null
value, since an object of the not null-bearing type can never be null.

Two testing functions are available for each domain as well. The boolean functions Is Null and
Not Null test objects of the null-bearing type, returning the appropriate boolean value indicating
whether or not an object contains the SQL null value.

Additionally, all domains provide two sets of comparison operators that operate on objects of the
null-bearing type. The first set of operators returns boolean values, and the second set of
operators returns objects of the type BooleanWith_Unknown, defined in the support package
SQLBooleanPkg (see Section C.2.3), which implements three-valued logic. The boolean
comparison operators are =, /=, <, >, <=, and >=, and return the value False if either of the
objects contains the SQL null value. Otherwise, these operators perform the comparison, and
return the appropriate boolean result. The Boolean With Unknown comparison operators are
Equals and, <, >, <=, and >=, and return the value Unk'nown if either of the objects contains
the SQL null value. Otherwise, the.se operators perform the comparison, and return the
BooleanWithUnknown values True or False.

C.1.2 Numeric Domains

In addition to the operations mentioned above, all numeric domains provide unary and binary
arithmetics operations for the null-bearing type of the domain. The subprograms that implement
these operations provide the data semantics of the SQL null value with respect to these arithmetic
operations. Specifically, any arithmetic operation applied to a null value results in the null value.
Otherwise, the operation is defined to be the same as the Ada operation. The unary operations
that are provided are +, -, and Abs. The binary operations include +, -, * and /. Finally, all
numeric domains provide the exponentiation operation (**).

C.1.3 Int and Smallint Domains

lnt and Smallint domains provide the application programmer with the Ada functions Mod and
Rem that operate on objects of the null-bearing type. Again, the subprograms that implement
these operations provide the data semantics of the SQL null value with respect to these arithmetic
operations. As with the other arithmetic operation, Mod and Rem return the null value when
applied to an object containing the null value. Otherwise, they are'defined to be the same as the
Ada operation.

These domains also make Image and Value functions available to the application programmer.
Both of these functions are overloaded; meaning that there are Image and Value functions that
operate on objects of both the not null-bearing and the null-bearing types of the domain. The
Image function converts an object of an tnt or Smallint domain to a character representation of
the integer value. The Value function converts a character representation of an integer value to
an object of an lnt or Smallint domain. These functions perform the same operation as the Ada
attribute functions of the same name, except that the character set of the character inputs and
outputs is that of the underlying SQLStandard.Char character set. If the Image and Value
functions are applied to objects of the null-bearing type containing the null value, a null character
object and a null integer object are returned respectively.

C.1.4 Character Domains

In addition to the operations provided by all domains, character domains provide the application
programmer with some string manipulation and string conversion operations.

86 Intermetrics. Inc.

Appendix C - Standard Support Operations and Specifications

Character domains provide two string manipulation functions that operate on objects of the null-
bearing type. The first one is the concatenation function (&). If either of the input character
objects contains the null value, then the object returned contains the null value. Otherwise this
operation is the same as the Ada concatenation operation. The other function is the Substring
function, which is patterned after the substring function of SQL2. This function returns the
portion of the input character obje.ct specified by the Start and Length index inputs. An Ada
ConstraintError is raised if the substring specification is not contained entirely within the input
string.

The remaining operations provided by the character domains are conversion functions. A
ToString and a ToUnpaddedString function exist for both the not null-bearing and the null-
bearing types of the domain. The ToString function converts its input, which exists as an
object whose value is comprised of characters from the underlying character set of the platform,
to an object of the Ada predefined type Standard.String. If conversion of a null-bearing object
containing the null value is attempted, the NullValueError exception is raised. The
ToUnpadded String functions are identical in every way to the ToString functions except
that trailing blanks are stripped from the value.

The WithoutNullUnpadded function is identical to the WithoutNull function, described in
section C. 1. 1 above, except that trailing blanks are stripped from the value.

Two functions exist that convert objects of the Ada predefined type Standard.String to objects
of the not null-bearing and null-bearing types of the domain. The To_SQL_CharNot Null
function converts an object of type Standard.String to the not null-bearing type of the domain.
The To_SQLChar function converts an object of type Standard.String to an object of the null-
bearing type.

Finally, character domains provide the function UnpaddedLength, which returns the length of
the character string representation'without trailing blanks. This function operates on objects of
the null-bearing type. and raises the NullValueError exception if the input object contains the
null value.

C.1.5 Enumeration Domains

Enumeration domains provide functions for the null-bearing type that are normally available as
Ada attribute functions for the not null-bearing type. The Image and Value functions have the
same semantics as described for lnt and Smallint domains in Section C. 1.3 above, except that
they operate on enumeration values rather than integers.

The Pred and Succ functions operate on objects of the null-bearing type, and return the previous
and next enumeration literals of the underlying enumeration type, respectively. If these functions
are applied to objects containing the null value, an object containing the null value is returned.

The last two functions are the Pos and Val functions. These functions also operate on objects of
the null-bearing type. Pos returns a value of the Ada predefined type Standard.Integer
representing the position (relative to zero) of the enumeration literal that is the value of the input
object. If the input object contains the null value, then the Null Value Error exception is
raised. The Val function accepts a value of the predefined type StandardJInteger and returns the
enumeration literal whose position in the underlying enumeration type is specified by that value.
If the input integer value falls outside the range of available enumeration literals, the Ada
ConstraintError is raised.

Intermetrics, Inc. 87

SAMeDL Language Reference Manual

C.1.6 Boolean Functions

The SAME standard support package SQLBooleanPkg defines a number of boolean functions,
namely not, and, or, and xor, which implement three-valued logic as defined in [SQL]. All of
these functions operate on two input parameters of the type Boolean WithUnknown, and return
a value of that type.

This support package also provides a conversion function, which converts the input of the type
Boolean With Unknown to a value of the Ada predefined type boolean. If the input object has
the valueUnkmo-wn, then the NullValueError exception is raised.

Finally, the package provides three testing functions that return boolean values. These functions,
IsTrue, IsFalse, and IsUnknown, return the value true if the input passes the test; otherwise
functions return the value false.

C.1.7 Operations Available to the Application

Operand Type Exceptions

Left Right Result

All Domains
NullSQL_<type> _Type
With Null _NotNull _Type
Without_Null _Type I NotNull 2 NullValueError
IsNull, NotNull -Type Boolean
Assign 3 -Type -Type ConstraintError

...... Equals, Not_Equals _Type -Type B_W_U'
<, >, <=, >= _Type _Type BWU
=, /=. >, <, >=, <= -Type -Type Boolean

Numeric Domains
unary +/-, Abs _Type -Type
+, -, I. _Type -Type -Type

_Type Integer _Type

Int and Smallint Domains
Mod, Rem _Type -Type -Type
Image _Type SQL_Char
Image NotNull SQLChrNN5

Value SQL_Char -Type
Value SQLChrNN _NotNull

Character Domains
WithoutNull_U npadded -Type _NotNull NullValueError
To_String _NotNull String
ToString -Type String NullValueError
To_UnpaddedString _NotNull String
ToUnpadded String -Type String NullValueError
To_SQL_CharNotNull String NotNull
To_SQL_Char String _Type
Unpadded_Length -Type SQL_U_L 9 NullValueError
Substring1 ° _Type _Jype Constraint_Error
& _Type _Type jType

88 Intermetrics, Inc.

Appendix C - Standard Support Operations and Specifications

Enumeration Domains
Pred, Succ _Type -Type
Image _Type SQL_Char
Image _Not_Null SQL_ChrNN
Pos -Type Integer NullValueError
Val Integer _Type
Value SQLChar _Type
Value SQL_ChrNN _NotNull

Boolean Functions
not BWU Boolean
and, or, xor B_W_U B_W_U Boolean
ToBoolean B_W_U Boolean NullValueError
Is True BWU BWU Boolean
IsFalse B_W_U B_W_U Boolean
Is_Unknown B_W_U B_W_U Boolean

1. "-Type" represents the type in the abstract domain of which objects that may be null are
declared.

2. "_Not_Null" represents the type in the abstract domain of which objects that are not null

may be declared.

3. "Assign" is a procedure. The result is returned in object "Left".

4. "B_W_U" is an abbreviation for BooleanWithUnknown.

5. "SQL._ChrNN" is an abbreviation for SQL,_Char_Not_Null.

9. "SQL._U_.L" is an abbreviation for SQL._Char-Pkg subtype SQLUnpaddedLength.

10. Substring has two additional parameters: Start and Length, which are both of the
SQL._Char_Pkg subtype SQL Char Length.

C.2 Standard Support Package Specifications

C.2.1 SQLStandard

The package SQLStandard is defined in [ESQL] and is reproduced here for information only.

package SqlStandard is

package CharacterSet renames csp;
subtype CharacterType is CharacterSet.cst;
type Char is array (positive range <>)

of CharacterType;
type Smallint is range bs.. ts;
type Int is range bi.. ti;
type Real is digits dr;
type Double-Precision is digits dd;
type SqlcodeType is range bsc.. tsc;
subtype Sql_Error is Sqlcode_Type range SqlcodeType'FIRST.. -1;
subtype Not-Found is SqlcodeType range 100..100;
subtype Indicator Type is t;

Intermetrics, Inc. 89

SAMeDL Language Reference Manual

-- csp is an implementator-defined package and cst is an
-- implemnentor-defined character type. bs, tw, bi, di, dr, dd, bsc.
-- and tsc are implementor-defined integral values. t is int or
-. smallint corresponding to an implementor-def ined <exact-numeric-type>
-. of indicator parameters.

end SqLStandard;

C.2.3 SQL Boolean-Pkg

package SOL.BooleanPkg is

type Boolean-withUnknown is (FALSE, UNKNOWN, TRUE);

-1 Three valued Logic operations
-Ithree-Val X three-val => three-val

IA B A and B AorB A xor B not A
-T T T T F F
-T F F T T F
-F F F F F T
IT U U T U F
-F U F *U U T
-U U U U U U

function "not" (Left: Boolean-with..Unknown) return Boolean withUnknown;
function "and" (Left, Right: Boolean with Unknown) return Boolea-n withUnknown;
function "or" (Left, Right :Boolean_)wih_Ujnknown) return Boolean -withUinknown;
function "xor" (Left, Right: Boolean-withUnknown) return Boolean-withUnknown;

- three-Val =2, bool or exception-
function ToBoolean (Left: Boolean-withUnknown) return Boolean;

- three-val =2. bool-
function Is-True (Left: Boolean-withUnknown) return Boolean;
function Is-False (Left: Boolean withunknown) return Boolean;
function IsUnknown (Left: Booleian-ýwithUnknown) return Boolean;

end SQLBoolean-Pkg;

CI2. SQL Int-Pkg

with SQLStandard;
with SQLBoolean..fkg; use SQLBooleanPkg3;
with SQLChar-Pk-g; use SQLChar-Pkg;
package SQLInt...Pkg is

type SQL-Int-not-null is new SQLStandard.lnt;

- Possibly Null Integer-
type SQLInt is limited private;

function NullSQLkInt return SQL-nt;

90 Intermetrcs, Inc.

Appendix C - Standard Support Operations and Specifications

-I This pair of functions convert between the null-bearing and non-null-bearing types.

function WithoutNullBase(Value : SQLInt) return SQL IntNotNull;
function With_NullBase(Value : SQL IntNot Null) return SQL_Int;

-I WlthNullBase raises NullValueError If the Input value Is null

-I This procedure Implements range checking. Note: It Is not meant to be used directly
-J by application programmers. See the generic package SOL-IntOps.
-I Raises constraint-error If not (First c= Right <= Last)

procedure Assignwithcheck (
Left: in out SQL_Int; Right: SQLInt;
First, Last : SQLIntNotNull);

-I The following functions Implement three valued arithmetic. If either Input to any of
-I these functions Is null, the function returns the null value; otherwise they perform
-I the Indicated operation. These functions raise no exceptions.

function "+"(Right : SQL_Int) return SQL_int;
function "-'(Right : SQL_Int) return SQLInt;
function "abs'(Right : SQLInt) return SQL_Int;
function "+"(Left, Right : SQLInt) return SQL_Int;
function "*'"(Left, Right : SQLInt) return SQL_Int;
function "-"(Left, Right : SQL Int) return SQL_Int;
function "/"(Left, Right : SQLjInt) return SQL_Int;
function "mod" (Left, Right : SQLInt) return SQLInt;
function "rem" (Left, Right : SQL_Int) return SQL_Int;
function ".." (Left : SQL_Int; Right: Integer) return SQL_Int;

-I simulation of 'IMAGE and 'VALUE that return/take SQLCharLNotNulI] Instead
-I of string

function IMAGE (Left : SQL_tInNot Null) return SQL_CharNotNull;
function IMAGE (Left : SQLInt) returm SQL_Char;
function VALUE (Left : SQL_CharNot NUll) return SQL IntNotNull;
function VALUE (Left : SQL-Char) return SQL_Int;

-I Logical Operations
-I type X type => Boolean_withyunknown
-I
-f These functions Implement three valued logic. If either Input Is the null value,
-I the functions return the truth value UNKNOWN; otherwise they perform the
-, Indicated comparison. These functions raise no exceptions.

function Equals (Left, Right : SQLInt) return BooleanwithUnknown;
function NotEquals (Left, Right : SOLIrt) return Boolean-withUnknown;
function "<" (Left, Right : SQLjInt) returm BooleanwithUnknown;
function ">" (Left, Right : SQLjInt) return BooleanwithUnknown;
function "<=" (Left, Right : SQL_Int) return Boolean_withUnknown;
function ">=" (Left, Right : SQL_Int) return BooleanwithUnknown;

-I type =. boolean
function Is_Null(Value * SQLInt) return Boolean;

Intermetrics, Inc. 91

SAMeDL Language Reference Manual

function NotNuil(Value : SQLInt) return Boolean;

-1 These functions of class type =2. boolean Equate UNKNOWN with FALSE. That Is,
-I they return TRUE only when the function returns TRUE. UNKNOWN and FALSE
-I are mapped to FALSE.

function "=" (Left, Right SOLInt) return Boolean;
function "<" (Left, Right SOLint) return Boolean;
function ">" (Left, Right SOLInt) return Boolean;
function "<=" (Left, Right: SOLInt) return Boolean;
function ">=" (Left, Right: SOLInt) return Boolean;

-1 This generic is Instantiated once for every abstract domain based on the SQL type
- Int. The three subprogram formal parameters are meant to default to the programs
-1 declared above. That Is, the package should be Instantiated in the scope of a use
-1 clause for SQL Int Pkg. The two actual types together form the abstract domain.
-1 The purpose of the generic is to create functions which convert between the two
-I actual types and a procedure which Implements a range constrained assignment for
-1 the null-bearing type. The bodies of these subprograms are calls to subprograms
-1 declared above and passed as defaults to the generic.

generic
type WithNull_type is limited 5rivate;
type Withoutnuiitype is range <>;
with function WithNullBase(Value : SQL IntNot Null) return With_NullType is <>;
with function WithoutNullBase(Value : With_NullType) return SQL IntNotNull is <>;
with procedure Assignwith -check (

Left: in out WithNull Type;
Right: With_Null_Type;
First, Last: SQL IntNotNull) is <>;

package SQLjlntOps is
function WithNull (Value: WithoutNuiLltype) return With_Null_type;
function WithoutNull (Value: WithNulLType) return WithoutNuil_type;
procedure Assign (Left in out With_null-Type; Right in With.null.type);

end SQLlnt_Ops;

private

-I not shown

end SQL IntPkg;

C.2.5 SQLSmallintPkg

with SQL_Standard;
with SQL_BooleanPkg; use SQLBooleanPkg;
with SQL_CharPkg; use SQL_CharPkg;
package SQL_SmallintPkg is

type SQL_Smallint not null is new SQL_Standard.Smallint;

-Possibly Null Integer-
type SQL_Smallint is limited private;

function Null_SQL_Smallint return OQL_Smallint;

92 Intermetrics, Inc.

Appendix C - Standard Support Operations and Specifications

-1 this pair of functions converts between the null-bearing and non-null-bearing types

function WithoutNullBase(Value : SOLSmallint) return SQL_SmallintNotNull;
function WithNull_Base(Value : SQL_SmallintNotNull) return SQL_Smallint;

-1 WithNullBase raises NullValueError If the Input value Is null

-I This procedure Implements range checking. Note: It Is not meant to be used directly
-I by application programmers. See the generic package SQLSmalllntOps.
-1 Raises constrainterror It not (First <= Right = Last)

procedure Assignwith check (
Left in out SQLSmallint;
Right: SQL_Smallint;
First, Last: SQL_SmallintNot Null);

-I The following functions Implement three valued arithmetic. If either Input to any of
-I these functions Is null, the function returns the null value; otherwise they perform
-I the Indicated operation. These functions raise no exceptions.

function "+"(Right : SQLSmallint) return SQLSmallint;
function "-"(Right: SQL_Smallint) return SQL_Smallint;
function "abs"(Right : SQLSmallint) return SQLSmallint;
function "+"(Left, Right : SQL_Smallint) return SQLSmallint;
function ""(Left, Right: SQLSmallint) return SQL_Smallint;
function "-"(Left, Right : SQL_Smallint) return SQLSmallint;
function "I"(Left, Right : SQL_Smallint) return SQL_Smallint;
function. "mod" (Left, Right SQLSmallint) return SQL_Smallint;
function "rem" (Left, Right SQL_Smallint) return SQL_Smallint;
function "" (Left: SQLSmallint; Right: Integer) return SQL_Smallint;

-I simulation of 'IMAGE and 'VALUE that return/take SQLCharLNotNulI] Instead
-I of string

function IMAGE (Left : SQL_SmallintNotNull) return SQL_CharNotNull;
function IMAGE (Left : SQL_Smallint) return SQLChar;
function VALUE (Left : SQLCharNotNull) return SQL_Smallint_NotNuil:
function VALUE (Left : SQLChar) return SQLSmallint;

-I Logical Operations
-I type X type => Boolean_withyunknown
-I
-I These functions Implement three valued logic. If either Input Is the null value,
-I the functions return the truth value UNKNOWN; otherwise they perform the
-(Indicated comparison. These functions raise no exceptions.

function Equals (Left, Right : SQLSmallint) return BooleanwithUnknown;
function NotEquals (Left, Right : SQL Smallint) return BooleanwithUnknown;
function"<" (Left, Right: SLSmallint) retum Boolean_ with_ Unknown;
function ">" (Left, Right : SQL_Smallint) return BooleanwithUnknown;
function"<=" (Left, Right : SQL_Smallint) return BooleanwithUnknown;
function ">=" (Left, Right : SQLSmallint) return Boolean withUnknown;

-I type =: boolean

Intermetrics, Inc. 93

SAMeDL Language Reference Manual

function IsNull(Value : SOL_Smallint) return Boolean;
function NotNuil(Value : SQL_.Smallint) return Boolean;

-I These functions of class type => boolean. Equate UNKNOWN with FALSE. That Is,
-I they return TRUE only when the function returns TRUE. UNKNOWN and FALSE

function "=" (Left, Right : SQLSmallint) return Boolean;
function "<" (Left, Right: SQLSmallint) return Boolean;
function ">" (Left, Right: SQLSmallint) return Boolean;
function "<=" (Left, Right: SQL_Smallint) return Boolean;
function ">=" (Left, Right: SQL_Smallint) return Boolean;

-I This generic is Instantiated once for every abstract domain based on the SQL type
-I Smallint. The three subprogram formal parameters are meant to default to the
-I programs declared above. That Is, the package should be Instantiated In the scope
-I of a use clause for SQL_SmalllntPkg. The two actual types together form the
-I abstract domain. The purpose of the generic Is to create functions which convert
-I between the two actual types and a procedure which Implements a range
-I constrained assignment for the null-bearing type. The bodies of these subprograms
-I are calls to subprograms declared above and passed as defaults to the generic.

generic
type WithNull_type is limited private;
type Withoutnulltype is range <>;
with function WithNullBase(Value : SQL_SmallintNotNull) return WithNull_Type is <>;
with function WithoutNull_Base(Value: With_NuILType)

return SQL_SmiiallintNotNull is <>;
with procedure Assignwith check (

Left: in out WithNullType;
Right: With_Null_Type;
First, Last: SQL_SmallintNot-Null) is <>;

package SQL_SmallintOPs is
function WithNull (Value Without_Nulltype) return With_NulLtype;
function WithoutNull (Value: WithNuILType) return WithoutNull_type;
procedure Assign (Left in out WithnullType; Right in Withjnulltype);

end SQLSmallint-ops;

private

- not shown

end SQL_SmallintPkg;

C.2.6 SQLRealPkg

with SOL_Standard;
with SQL_Boolean Pkg; use SQL_BooleanPkg;
package SQLReaPkg is

type SQL_RealNotNull is new SQL_Standard.Real;

- Possibly Null Real--
type SQLReal is limited private;

function Null_SQL_Real return SQL_Real;

94 Intermetrics, Inc.

Appendix C - Standard Support Operations and Specifications

-I this pair of functions converts between the null-bearing and non-null-bearing types

function WithoutNullBase(Value: SQL_Real) return SQLRealNotNuil;
function WithNull_Base(Value : SQLRealNot Null) return SQL_Real;

-1 WithNullBase raises NullValueError If the Input value Is null

-I This procedure Implements range checking. Note: It Is not meant to be used directly
-I by application programmers. See the generic package SQL._RealOps.
-t Raises constrainterror If not (First <= Right 4= Last)

procedure Assign__with_.Check (
Left in out SQL_Real;
Right: SQL Real;
First, Last: SQL_RealNotNull);

-I The following functions Implement three valued arithmetic. If either Input to any of
-I these functions Is null, the function returns the null value; otherwise they perform
-I the Indicated operation. These functions raise no exceptions.

function "+"(Right: SQL-Real) return SQL_Real;
function "-"(Right: SQL-Real) return SQL_Real;
function "abs"(Right: SQL-Real) return SQL_Real;
function "+"(Left, Right: SQL Real) return SQL_Real;
function ""(Left, Right: SQLReal) return SQL_Real;
function "-"(Left, Right: SQLReal) return SQL_Real;
function "/"(Left, Right: SQL-Real) return SQLReal;
function "**"(Left: SQL_Real; Right : Integer) return SQL-Reai;

-I Logical Operations
-I type X type =: Booleanwithunknown
-I
-I These functions Implement three valued logic. If either Input is the null value,
-I the functions return the truth value UNKNOWN; otherwise they perform the
-I Indicated comparison. These functions raise no exceptions.

function Equals (Left, Rigtj: SQL_Real) return BooleanwithUnknown;
function NotEquals (Left, Right : SQLReal) return BooleanwithUnknown;
function "<" (Left, Right: SQL_Real) return BooleanwithUnknown;
function ">" (Left, Right: SQL_Real) return BooleanwithUnknown;
function "<=" (Left, Right: SQL_Real) return BooleanwithUnknown;
function ">=" (Left, Right: SQL_Real) return BooleanwithUnknown;

-I type =- boolean
function IsNull(Value : SQL Real) return Boolean;
function NotNull(Value : SQL_Real) return Boolean;

-I These functions of class type => boolean
-I Equate UNKNOWN with FALSE. That Is, they return TRUE only when the function
-I returns TRUE. UNKNOWN and FALSE are mapped to FALSE.

function "=" (Left, Right: SQL_Real) return Boolean;
function "<" (Left, Right : SQL_Real) return Boolean;
function">" (Left, Right: SQLReal) return Boolean;
function "<=" (Left, Right: SQL_Real) return Boolean;
function ">=" (Left, Right SQL_Real) return Boolean;

Intermnetrics, Inc. 95

SAMeDL Language Reference Manual

-1 This generic Is instantiated once for every abstract domain based on the SOL type
-1 Real. The three subprogram formal parameters are meant to default to the programs
-1 declared above. That Is, the package should be Instantiated In the scope of a use
-1 clause for SQL RealPkg. The two actual types together form the abstract domain.
-1 The purpose of the generic Is to create functions which convert between the two
- actual types and a procedure which Implements a range constrained assignment for
- the null-bearing type. The bodies of these subprograms are calls to subprograms
- declared above and passed as defaults to the generic.

generic
type With Nulltype is limited private;
type Withoutnull-type is digits <>;
with function WithNullBase(Value: SQLRealNotNulI) return WithNulLType is <>;
with function WithoutNullBase(Value : WithNull_Type) return SQL_RealNotNull is <>;
with procedure Assignwith check (

Left: in out WithNullType;
Right: WithNullType;
First, Last : SQL_RealNot_Null) is <>;

package SQLRealOps is
function WithNull (Value : WithoutNulLtype) return WithNuiLtype;
function WithoutNull (Value: WithNuILType) return WithoutNuILtype;
procedure Assign (Left in out WithNulLType; Right in WithNulLtype);

end SQL_RealOps;

private

-I not shown

end SQL_ReaLPkg;

C.2.7 SQL_Double PrecisionPkg

C.2.8 SQLChar Pkg

with SQLSystem; use SOLSystem;
with SQL_BooleanPkg; use SQL_BooleanPkg;
with SQLStandard;

package SQLCharPkg is

subtype SQLCharLength is natural range 1 .. MAXCHRLEN;
subtype SQLUnpaddedLength is natural range 0 .. MAXCHRLEN;

type SQL_CharNotNull is new SQL_Standard.Char;
type SQLChar(Length : SQLCharLength) is limited private;

function NullSQL_Char return SQLChar;

-1 The next three functions convert between null-bearing and non null-bearing-types.
-I WithoutNullBase and WithNullBase are Inverses (mod. null values).
-I See also SQL_CharOps generic package below

function WithNullBase(Value : SQLCharNot_Null) return SQL_Char;
function WithoutNullBase(Value : SQL-Char) return SQL_CharNotNull;

96 Intermetrics, Inc.

Appendix C - Standard Support Operations and Specifications

function WithoutNull_UnpaddedBase(Value : SOLChar) return SQLCharNotNull;

-I Without_- NuiLUnpaddedBase removes trailing blanks from the Input
-I Axiom: unpaddedLength(x) = Without_Null_UnpaddedBase(x)'Length
-I Both WithoutNullBase and Without_NulL UnpaddedBase raise
-I null_value_error if x Is null

function UnpaddedLength (Value: SQL-Char) return SQLUnpaddedLength;

-I The next six functions convert between Standard.String
-I types and the SQL_Char and SQLCharNotNull types

function ToString (Value SQLChar_NotNull) return String;
function ToString (Value SQL_Char) returm String;
function To_UnpaddedString (Value: SQLCharNotNull) return String;
function To_UnpaddediString (Value : SQLChar) returm String;
function To_SQL_Char__NbtNull (Value: String) return SQL_CharNotNull;
function ToSQLChar (Value : String) return SQL-Char;

-I Assignment operator for "null-bearing" type

procedure Assign (Left: out SQL_Char; Right: SQLChar);

-I Substrlng(x,k,m) returns the substring of x starting at position k (relative to 1) with
-1 length m. Returns null value If x Is null
-I Raises constraint-error If Start <c 1 or Length < 1 or Start + Length -1 > x.Length

function Substring (Value : SQLChar; Start, Length: SQLCharLength) return SQL_Char;

"-J "&" returns null If either parameter Is null; otherwise performs concatenation in the
-I usual way, preserving all blanks. May raise constraint-error Implicitly If result Is too
-I large (i.e., greater than SQL_CharLength'Last

function "&" (Left, Right: SQL-Char) return SQLChar;

- Logical Operations
-I type X type => Booleanwithunknown-
-J The comparison operators return the boolean value UNKNOWN it either
-J parameter Is null; otherwise, the comparison Is done In accordance with
-J ANSI X3.135-1986 para 5.11 general rule 5; that Is, the shorter of the two string
-I parameters Is effectively padded with blanks to be the length of the longer
-I string and a standard Ada comparison Is then made

function Equals (Left, Right: SQL_Char) return BooleanwithUnknown;
function NotEquals (Left, Right :SQLChar) return BooleanwithUnknown;
function "<" (Left, Right: SQLChar) return BooleanwithUnknown;
function ">" (Left, Right: SQLChar) return BooleanwithUnknown;
function "<=" (Left, Right: SQLChar) return BooleanwithUnknown;
function ">=" (Left, Right: SQLChar) return BooleanwithUnknown;

-1 type => boolean-

function Is_Null(Value : SQL-Char) return Boolean;
function NotNull(Value : SQLChar) return Boolean;

-1 These functions of class type => boolean equate UNKNOWN with FALSE. That Is,
-I they return TRUE only when the function returns TRUE. UNKNOWN and FALSE
-I are mapped to FALSE.

Intermetrics, Inc. 97

SAMeDL Language Reference Manual

function "=" (Left, Right : SOLChar) return Boolean;
function "<" (Left, Right: SQLChar) re, qm Boolean;
function "" (Left, Right : SQLChar) rb,.,m Boolean;
function "<=" (Left, Right: SQLChar) return Boolean;
function ">=" (Left, Right: SQL-_Char) return Boolean;

-I The purpose of the following generic Is to generate conversion functions between a
-I type derived from SQLCharNotNull, which are effectively Ada strings and a type
-I derived from SQLChar, which mimic the behavior of SQL strings. The subprogram
-I formals are meant to default; that Is, this generic should be Instantiated In the scope
-I of an use clause for SOLCharPkg.

generic
type WithNuiLType is limited private;
type WithoutNuilType is array (positive range <>) of sqLstandard.Charactertype;
with function WithNulliBase (Value: SQL._Char_NotNulI) return WithNulLType is <>;
with function Without_NulliBase (Value: With_NullType) return SQL_CharNotNull is <>;
with function Without_NullUnpaddedBase (Value: With_NullType)

return SQL_CharNotNull is o;

package SQLChar._COps is
function WithNull (Value : Without_Null_Type) return WithNuiLType;
function WithoutNull (Value : WithNullType) return WithoutNuiLType;
function Without_NulLUnpadded (Value : With_Null_Type) return WihoutNulLType;

end SQL_CharOps;

private

-I not shown

end SQL_CharPkg;

C.2.9 SQLEnumerationPkg

with SQL_BooleanPkg" olne SQL_Boolea'_Pkg:
with SQL_CharPkg; use SQL_CharPkg;
generic

type SQL_EnumerationNotNull is (<>);

package SQLEnumeration_Pkg is

-1 - Possibly Null Enumeration-
type SQL_Enumeration is limited private;

function Null_SQL_Enumeration return SQL_Enumeration;

-I This pair of functions convert between the null-bearing and non-null-bearing types.

function WithoutNull(Value : in SQL_Enumeration) return SQL_EnumerationNotNuIl;
function With_Null(Value : in SQL_EnumerationNot Null) return SQL_Enumeration;

-1 WithNull raises Null Value Error If the Input value Is null

-I Assignment operator for "null-bearing" type

98 lnterm-':cs, Inc.

Appendix C - Standard Support Operations and Specifications

procedure Assign (Left in out SOL_Enumeration; Right :in SQLEnumeration);

-g Logical Operations
-I type X type => Boolean_wlthhunknown
-I These functions Implement three valued logic. If either Input Is the null value,
-I the functions return the truth value UNKNOWN; otherwise they perform the
-I Indicated comparison. These functions raise no exceptions

function Equals (Left, Right : SQL_Enumeration) return BooleanwithUnknown;
function NotEquals (Left, Right :SQLEnumeration) return BooleanwithUnknown;
function "<" (Left, Right: SQL_Enumeration) return BooleanwithUnknown;
function">" (Left, Right: SQL_Enumeration) return BooleanwithUnknown;
function "<=" (Left, Right: SQL_Enumeration) return BooleanwithUnknown;
function ">=" (Left, Right: SQL_Enumeration) return BooleanwithUnknown;

-I type =- boolean
function IsNull (Value: SQL_Enumeration) return Boolean;
function NotNull (Value : SQL_Enumeration) return Boolean;
function "=" (Left, Right: SQL_Enumeration) return Boolean;
function "<" (Left, Right: SQL_Enumeration) return Boolean;
function ">" (Left, Right: SQL_Enumeration) return Boolean;
function "<=" (Left, Right SQL_Enumeration) return Boolean;
function ">=" (Left, Right SQL_Enumeration) return Boolean:

- 'Pred, 'Succ, 'Image, 'Pos, 'Val, and 'Value attributes of the
- SQL_EnumerationNot Null type, passed In, for the associated SQL_Enumeration
- (null) type. They all raise the NullValueError exception If a null value is passed in.

- Pred raises the ConstraintError exception If the value passed In Is equal to
-I SQL_EnumerationNotNull'Last.
- Succ raises the ConstraintError exception If the value passed in Is equal to
- SQL_Enumeration_NotNulrFirst.
- Val raises the ConstraintError exception if the value passed In Is not In the range
- P'POS(P'FIRST)..P'POS(P'LAST) for type P.
- Value raises the ConstraintError exception Hf the sequence of characters passed in
-I does not have the syntax of an enumeration literal for the Instantiated
-I enumeration type.

function Pred (Value : in SQL_Enumeration) return SQL_Enumeration;
function Succ (Value: in SOL_Enumeration) return SQL_Enumeration;
function Pos (Value in SQLEnumeration) return Integer;
function Image (Value in SQL_Enumeration) return SQL_Char;
function Image (Value: in SQLEnumerationNotNull) return SQL_CharNotNull;
function Val (Value : in Integer) return SQL_Enumeration;
function Value (Value: in SQLChar) return SQL_Enumeration;
function Value (Value: in SQLCharNotNull) return SQLEnumerationNot_Null;

private

-I not shown

end SQLEnumerationPkg;

Intermetrics, Inc. 99

Appendix D - Transform Chart

Appendix D Transform Chart

Function Section Input Output Output Is

AdaNAIJE 4.1.5 Record Declaration Ada Identifier Default name of the row record formal
parameter

5.6 Parameter Ada Identifier Name of the parameter in the Ada procedure
declaration

5.7 Select Parameter Ada Identifier Name of the component in the Ada row
record type

5.8 Insert Column Ada Identifier Name of the component in the Ada row
Specification record type

5.10 Value Expression Ada Identifier Default name for record component if the
expression appears as a select parameter

AdaType 4.1.4 Constant Declaration Ada Identifier Name of the type in Ada declaration of
constant

5.6 Parameter Ada Identifier Name of the type of the parameter in the
Ada procedure declaration

5.7 Select Parameter Ada Identifier Name of the type of the component in the
Ada row record type

5.8 Insert Column Ada Identifier Name of the type of the component in the
Specification Ada row record type

COMPAd. 5.2 Select Parameter Ada Record Used in declaration of the Ada row record
Component type

Insert Column
Specification

5.4 Select Parameter Ada Record Used in declaration of the Ada row record
Component type

DATACLASS 2.4 Literal Data Class Data class of the literal
4.1.1 Base Domain Data Class Data class of the base domain
4.1.3 Domain Data Class Data class of the domain or domain

Domain Parameter parameter
4.1.4 Constant Data Class Data class of the constant
4.2 Column Data Class Data class of the column
5.6 Parameter Data Class Data class of the parameter
5.10 Value Expression Data Class Data class of the expression

DBLngNAME 5.7 Dblength Phrase Ada Identifier Name of dblength parameter
4.1.5 undefined if no dblength phrase

DBLeugA,& 5.2 Select Parameter Ada Record Row record component used for dblength
5.4 Component data

DBMS-TYPE 4.1.3 Domain SQL Data Type SQL data type to be used at the database
interface with an object of the specified
domain

Intermetrics, Inc. 101

SAMeDL Language Reference Manual

Function Section Input Output Output Is

DOMAIN 4.1.3 Domain Parameter NODOMAIN NODOMAIN is the domain of a domain
parameter

4.1.4 Constant Domain Domain of the constant (NO-DOMAIN for
universal constants)

4.2.1 Column Domain Domain of the column
5.6 Parameter Domain Domain of the parameter
5.10 Value Expression Domain Domain of the expression (NODOMAIN

for universal constants)

INDI l 4E 5.6 Parameter SQL Identifier Name of an SQL indicator parameter
5.7 Select Parameter SQL Identifier Name of an SQL indicator parameter
5.8 Insert Column SQL Identifier Name of an SQL indicator parameter

Specification

INDICSQL 5.6 Parameter SQL Indicator Param Name of an SQL indicator parameter
5.7 Select Parameter SQL Indicator Param Name of an SQL indicator parameter
5.8 Insert Column SQL Indicator Param Name of an SQL indicator parameter

Specification

LENGTH 2.4 Literal Natural Number Length of the literal (NQLENGTH if not
char literal)

4.1.3 Domain Natural Number Length of objects in domain or domain
Domain Parameter parameter value (NOLENGTH if not

char domain or parameter)
4.1.4 Constant Natural Number Length of the constant (NO-LENGTH if not

char literal)
4.2.1 Column Natural Number Length of domain of column
5.6 Parameter Natural Number Length of domain of parameter
5.10 Value Expressidn Natural Number Length of expression (NO-LENGTH if not

char literal)

MODE 5.6 Parameter Ada Mode Mode of the parameter in the Ada procedure
declaration

PARMAd, 5.6 Parameter Ada Parameter Ada parameter declaration in the Ada
Declaration procedure declaration

PARMRo, 5.9 Into Clause Ada Identifier Name of row record parameter
Insert From Clause

PARMSQL 5.6 Parameter SQL Parameter An SQL parameter declaration
5.7 Select Parameter SQL Parameter An SQL parameter declaration
5.8 Insert Column SQL Parameter An SQL parameter declaration

Specification

102 Intermetrics, Inc.

Appendix D - Transform Chart

Function Section Input Output Output Is
SCALE 2.4 Literal Natural Number Scale of the literal (NOSCALE if not a

numeric literal)
4.1.3 Domain Natural Number Scale of objects in domain or domain

Domain Parameter parameter value (NO_SCALE if not a
numeric domain or parameter)

4.1.4 Constant Natural Number Scale of the constant (NO_SCALE if not a
numeric literal)

4.2.1 Column Natural Number Scale of domain of column
5.6 Parameter Natural Number Scale of domain of parameter
5.10 Value Expression Natural Number Scale of expression using SQL rules

(NOSCALE if not a numeric literal)

SQLNAME 2.3 Ada Identifier SQL Identifier Unique SQL identifier
5.4 Cursor Name SQL Identifier Unique SQL cursor name
5.6 Parameter Name SQL Identifier Unique SQL parameter name
5.7 Select Parameter SQL Identifier Unique name of SQL parameter
5.8 Column Name SQL Identifier Unique name of SQL parameter

SQLsc 5.11 Search Condition SQL Search An SQL search condition
Condition

SQLsQ 5.12 Subquery SQL Subquery An SQL subquery

SQLvE 5.10 Value Expression SQL Value An SQL value expression
Expression

TYPER°, 5.9 Into Clause Ada Idei dtier Name of the type of the row record
Insert From Clause parameter

VALUE 4.1.4 Static Expression Ada Literal Value assigned to the expression by the
rules of SQL

Intermetrics, Inc. 103

Appendix E - Glossary

Appendix E Glossary
Abstract Interface. A set of Ada package specifications containing the type and procedure

declarations to be used by an Ada application program to access the database.

Abstract Module. A module that specifies the database routines needed by an Ada application.

Assignment context. A value expression appears in an assignment context if the value of that
value expression is to be impliritly or explicitly assigned to an object. The assignment contexts
are: select parameters, constant declarations, values in a VALUES list of an insert statement, set
items in an update statement.

Base domain. A template for defining domains.

Conform. A value expression in an assignment context conforms to a target domain if the rules
of SQL allow the assignment of a value of the data class of the expression to an object of the data
class of the domain.

Conversion method. A method lof converting non-null data between objects of the not null-
bearing type, the null-bearing type, and the database type associated with the domain.

Correlation name. See [SQL], Section 5.7.

Cursor. See [SQL], Section 8.3.

Data class. The data class of a value is either character, integer, fixed, float, or enumeration.
The data class of a domain determines which values may be converted, implicitly or explicitly, to
the domain.

Database type. The SQL data type to be used with an object of that domain when it appears in
an SQL parameter declaration. This need not be the same as the type of the data as is stored in
the database.

Definitional module. A module that contains shared definitions: that is, declarations of base
domains, domains, subdomains, constants, records, exceptions, enumerations, and status maps
that are used by other modules.

Domain. The set of values and applicable operations for objects associated with a domain. A
domain is similar to Ada type.

Exposed. The exposed name of a module (table) that appears in a context clause (table ref)
containing an as phrase (correlation name) is the identifier in the associated as phrase (correlation
name); the module name (table name) is hidden. If the as phrase (correlation name) is not
present, the exposed name is that module's (table's) name. The exposed name of a table or
module is the name by which that table or module is referenced.

Extended. A table, view, module, procedure, cursor, or cursor procedure that includes some
nonstandard operation or feature.

Hidden. See exposed.

Module. A definitional module, a schema module, or an abstract module.

Intermetrics, Inc. 105

SAMeDL Language Reference Manual

Not null type. The Ada type associated with objects of a domain that may not take a null value.

Null type. The Ada type associated with objects of a domain that may take a null value.

Null value. SQL's means of recording missing information. A null value in a column indicates
that nothing is known about the value that should occupy the column.

Options. The aspects of the base domain that are essential to the declaration of domains based
upon the base domain. In particular they define the base domain's null- and not null-bearing type
name, data class, database type, and conversion methods.

Patterns. A template used to create the Ada constructs that implement the Ada semantics of a
domain, subdomain, or derived domain declaration.

Row record. The Ada record associated with procedures that contain either a fetch, select, or
insert statement. It is used to transmit the database data to or from the client program.

Row record type. The Ada type of the row record.

SAME. SQL Ada Module Extensions.

SAMeDL. SQL Ada Module Description Language.

Schema module. The SAMeDL notion that corresponds to the SQL SCHEMA.

SQL. Structured Query Language.

SQLCODE. See [SQL], Section 7.3.

Standard Map. The Standard Map is a status map defined in SAMeDLStandard that has the
form "status Standard-Map named IsFound uses boolean is (0 => true, 100 => false);".
Standard-Map is the status map for fetch statements that appear in cursor declarations by default.

Standard post processing. The processing that occurs after the execution of an SQL procedure
but before control is returned to the calling application.

Static expression. A value expression that can be evaluated at compile time (i.e., all the
associated leaves consist solely of literals, constants, or domain parameter references).

Status map. A partial function that associates an enumeration literal or a raise statement with
each specified list or range of SQLCODE values. Status maps are used within the abstract
module to uniformly process the status data for all procedures.

Target domain. The domain of the object to which an assignment is being made in an
assignment context.

Universal constant. A constant whose declaration does not contain a domain reference.

Value expression. A value expression differs from an SQL value expression in that (1) an
operand may be a reference to a constant or a domain parameter, and (2) SAMeDL value
expressions are strongly typed.

106 Intermetrics, Inc.

Appendix F - Syntax Summary

Appendix F Syntax Summary

This appendix provides a summary of the syntax for SAMeDL. Productions are ordered
alphabetically by left-hand nonterminal name. The section number indicates the section where
the production is given.

[5.1]
abstract_module [context

[extended]
abstract module Adaidentifier_1 Is

authorization schemareference
{ definition)
{ procedure_or_cursor)

end [Adajdentifier_2 ;

[5.10]
all-set function [avg I max I min I sum I ([all] value-expression)

[3.2]
as_phrase ::= as Ada_identifier

[4.1.3]
bas_domref ::= domref I base-domainreference

[4.1.1]
basedomaindeclaration [extended] base domain Adaidentifier_1

[(base.domainparameterlist)]
is

patterns
options

end [Ada identifier_2];

[4.1.1.1]

basedomain_parameter Adaidentifier : dataclass [static-expression] I
map:= pos
map :=Image

[4.1.1]

basedomainparameterlist basedomain-parameter { ; base domain.parameter}

[3.4]
basedomainreference (module-reference .] Ada_identifier

[5.11.2]
between-predicate ::= value-expressibn [not I between value-expression and valueexpression

p [5.11]
booleanfactor ::= [not] booleanprimary

" [5.11]booleanprimary ::= predicate I (searchcondition)

[5.11]
booleanterm::= boolean factor I booleanterm and booleanfactor

Intermetrics, Inc. 107

SAMeDL Language Reference Manual

[4.2.1]
checkconstraintdefinition ::= check (searchcondition)

[5.51
closestatement ::= close [Ada_identifier J

[4.2.1]
column_constraint ::= not null SQL_uniquespecification

SQL_reference specification
check (search_cdndition)

[4.2.1 1
column_definition ::- SQL_columnname [SQLdatajtype I

(SQL_default_clause I
[column constraint] domainreference

[3.4]
columnname ::= SQL_identifier

[3.4]
columnreference "'= [tablereference .] columnname

[5.3]
commit_statement ::= commit work

[5.11.1]
comp-_op -=I<>I1>I<I>

[5.11.11
comparisonpredicate value-expression compop val-or.subquery

[3.1]
compilation unit ::= module { module)

[4.1.5]
component::= component-name [dblength [namedjphrase I]

[4.1.5]
componentdeclaration ::= component {, component) : domainreference [not null];

[4.1.5]
componentdeclarations ::= componentdeclaration { componentdeclaration)

[4.1.5]
componentname ::=Adaidentifier

[4.1.4]
constantdeclaration constant Adaidentifier [domainreference J

Is staticexpression;

[3.41
constant-reference ::= [modulereference. 1 Adaidentifier

[3.2]
context ::- context-clause (contextclause)

108 Intermetrics, Inc.

Appendix F - Syntax Summary

[3.2 1
contextclause := withclause I withschema-clause useclause

[4.1.1.3]
converter ::= function patternmlist I

procedure pattermnlist I
type mark

[3.3]
correlationname::= SQL_identifier

[5.4]
cursordeclaration [extended] cursor Adaidentifier_1

[input_.parameterjlist I
for

query
[SQL_orderbyclause]

[Is cursor-procedures
end[Ada_identifier_2];]

[5.5]
cursordeletestatement delete from tablename

[where current of Ada identifier]

[3.4]
cursor-proc reference [cursorreference . I Adaidentifier

[5.5]
cursor procedure [extended] procedure Ada_identiftier_l

[inputparameterjist]
Is

cursorstatement
[status.clause]

[5.5]
cursorprocedures cursorprocedure { cursor_procedure)

[3.4]
cursorreference [modulereference .] Adaidentifier

[5.5]
cursor_statement open statement I

fetchstatement I
closestatement
cursor update_statement J
cursordelete_statement J
extended_cursorstatement

[5.5]
cursor updatestatement ":= update tablename

set setitem {, setitem I
[where current of Ada identifier

Intermetrics, Inc. 109

SAMeDL Language Reference Manual

[4.1.1.1]

dataclass ::= Integer I
character I
fixed I
float I
enumeration

[4.1.3]
database mapping ::-= enumerationassociation-list I pos I Image

[4.1.1.3]
dbmsjtype int

Integer
smallint
real
double precision
char
character
implementation defined

[4.1]
definition basedomain_declaration I

domaindeclaration
subdomaindeclaration
constant declaration
recorddeclaration
enumeration-declaration
exceptiondeclaration
status mapideclaration

[4.1 1
definitionalmodule [context]

[extended]
definition module Adaidentifier_l Is

{ definition) .
end [Adaidentifier2 J;

[5.31
delete-statement delete from table-name

(where search_condition]

[4.1.1.2]
deriveddomainpaenem derived domain pattern is pattern_list

end pattern;

[5.10]
distinct set function [avg I max I min I sum I count] (distinct columnreference)

[4.1.31
domref -:=domainreference I subdomain-reference

[5.10]
domainconversion -:, domainreference (value-expression)

[4.1.3]
domaindeclaration "= domain Adaidentifier is new bas_domjref [not null]

[(parameterassociationjlist)];

110 .. Intermetrics, Inc.

__Appendix F - Syntax Su__ar_

[3.4]
domainparameter-reference ::= domain reference.Adaidentifier

[4.1.1.2]
domainpattern ::= domain pattern Is pattemrlist

end pattern;

[3.4]
domainreference [modulereference I Adaidentifier

[4.1.3]
enumeration association ::= enumerationliteral => databaseIiteral

[4.1.3]
enumeration association list "= (enumeration_association (, enumeration-association })

[4.1.61
enumerationdeclaration ::= enumeration Ada-identifier-l is (enumerationliteraljlist);

[4.1.6]
enumeration_literallist::= enumeration literal {, enumeration literal }

[3.4]
enumerationliteralreference [modulereference . I Ada_identifier

[3.4]
enumerationreference [modulejeference . I Ada-identifier

[5.11.4]escape_clause ::= escape valuespec

[4.1.7]
exception-declaration exception Adaidentifier;

[3.4]
exception-reference [modulereference . I Ada-identifier

[5.11.7]
exists-predicate ::= exists subquery

[3.7]
extendedcursorstatement implementation defined

[3.7]
extended queryexpression implementation defined

[3.7]
extended~query-specification ::= implementation defined

[3.7]
extendedschemaelement ::= implementation defined

[3.7]
extendedstatement ::= implementation defined

[3.7]
extendedtableelement ::= implementation defined

!ntermetrics, Inc. II

SAMeDL Language Reference Manual

[5.10]
factor ::=[+ I]primary

[5.51
fetch-statement ::= fetch [Ada identifier t] [into-clause]

[3.3]
fromclause ::=from tableref {, tableref}

[4.1.1.31
fundamental ::= for not null type name use pattern_list;

for null type name use patternlist;
for data class use data-class ;
for dbms type use dbmstype [patternmlist];
for conversion from type to type use converter;

[5.11.3]
in-predicate ::= value-expression [not] In subquery_or_value-specjist

[5.6]
inputparameter ::= Adaidentifier I [namedqphrase]:

(In] [out] domainreference [not null]

[5.6]
inputparameterlist (parameter (; parameter)

[3.4]
input-reference [procedurereference. I Ada_identifier

[cursor_procreference .] Adaidentifier

[5.8]
insertcolumnlist insert_column specification {, insert-column.specification}

[5.8]
insertcolumn-specification ::= column-name [named_phrase J [not null]

[5.9]
insertfromclause ::= from intofrombody

[5.3]
insertstatementquery::= Insert Into tablename [(SQLinsertcolumnjlist)]

queryspecification

[5.3]
insertstatementvalues "= Insert Into tablename ((insertcolumn list)]

[insert-fromclause] values [(insert value list)

[5.8]
insertvalue null I

constantreference I
literal I
columnname I
domain-parameterreference

[5.8 1
insertvalue list insert_value {, insert value

112 Intermetrics, Inc.

Appendix F - Syntax Summary

[5.9]
intoclause ::= Into B

[5.9]
intofrombody ::= Ada identifier : recordid I

Ada_identifierl I
record_id

[5.11.4]
like_predicate ::= columnreference [not] like pattern [escapeclause]

[3.1]
module ::= definitional_module I schema-module I abstractmodule

[3.2]
modulename::= Adaidentifier

[3.4]
modulereference ::= Adaidentifier

[4.1.5]
named_phrase ::= named Adaidentifier

[5.11.5]
null_predicate ::= columnreference Is[not] null

[5.5]
openstatement open [Ada identifier]

[4.1.1.3]
option ::= fundamental I

for wordlist use pattemrlist; I
for wordlist use predefined;

[4.1.1.3]
options { options }

[4.1.3]
parameterassociation ::= Adaidentifier => static-expression

map =D databasenmapping
enumeration =- enumerationreference
scale => staticexpression
length => staticexpression

[4.1.3]
parameterassociationlist ::= parameterassociation {, parameterassociation }

[4.1.1.2]
pattern ::= domain_pattern I

subdomain_pattem I
deriveddomainpattern

[4.1.1.2]
pattemelement ::= characterliteral

[4.1.1.2]
pattern_list ::- pattemrelement { pattern_element }

Intermetrics, Inc. 113
4

SAMeDL Language Reference Manual

[5.11.41
pattemrnstring ::, value-spec

[4.1.1.2]
patterns ::= { pattern

[5.11]

predicate ::= comparison_predicate -
between-predicate
in-predicate
likepredicate
null_predicate
quantified-predicate
existspredicate

[5.10]
primary literal

constantreference
domainparameterreference
column-reference
input~reference
setfunction-specification
domainconversion
(value-expression)

[5.2 1
proceduredeclaration [extended

procedure Adaidentifier_1
[input_parameterlist]

is

statement
[status clause]

[5.11
procedureorcursor::= cursordeclaration I proceduredeclaration

[3.4]
procedurereference (modulereference . I Ada_identifier

[5.11.6 1
quantifiedpredicate valueexpression compop quantifier subquery

[5.11.6]
quantifier::= all I some I any

[5.4]
query ::= query._expression I extendedqueryexpression

[5.4]
queryexpression queryterm I

queryexpression union [all] query jerm

[4.2.2]
queryspec::= queryspecification I extendedqueryspecification

114 Intermetrics, Inc.

_ _ _ __ ,Appendix F - Syntax Summary

[5.4]
queryspecification::= select [distinct I all.] selectlist

fromclause
[where searchcondition]
[SQLgroupby-clause]
[having search-condition]

[5.4]
queryterm::= queryspecification I

(queryexpression)

[4.1.5]
recorddeclaration ::= record Ada identifier 1 [namedphrase] is

component declarations
end [Ada identifier_2 1;

[5.9]
record-id new Ada identifier 2 I

recordreference

(3.41
recordreference [modulereference.] Ada identifier

[5.12]
resultexpression valueexpression I*

[5.3]
rollbackstatement rollback work

[4.2]
schema_element tabledefinition I

viewdefinition I
SQLprivilege-definition I
extended_schemaelement

(4.2]
schemamodule [context]

[extended]
schema module SQL identifier 1 Is

{ schemaelement -

end [SQL-identifier_2];

[3.2]
schemaname::= SQL_identifier

[3.31
schemaref ::= schema-name I Adaidentifier

[3.4]
schemareference ::= schemaname I Ada identifier

15.11)
searchcondition ::= boolean term I searchcondition or booleanterm

[5.7]
selectlist : I selectjparameter {, selectparameter }

Intermetrics, Inc. 115

SAMeDL Language Reference Manual___ _______________

[5.71
select...parameter :-value expression [named..phrase I[not null

[dblength [named...phrase 1

[5.3
select-statement := select [distinct Iall] select-list

(into-clause]
fromn-clause
[where search-condition
jSQL...group_.byclause]
[having search-condition

(5.10]
set-function...specification := count('I

distinct-set function
all-set-funct-ion

[5.3])
set-itemn ::= column-reference = update-vyalue

[4.2.1]
SQL~defauft-clause ::. (see [SQL) 6.4)

[5.3]
SQL..grup~byclause ::- group by column-reference {,column-reference)

[5.3]
SQL-insert-column-list :=column-.,name tJ, column-name)

[5.4]
SQL-order-byc-lause :=order by SQL..sort-specification {,SQLsort..specffication)

[4.2])
SQL..privilege...definition:: (see (SQL) 6.10)

[4.2.1]
SQL-reference specif ication ::= (see (SQL) 6. 7)

[4.2.1]
SQL-referential-constraint-def inition ::= (see [SQL) 6. 7)

[5.4]
SQL~sort-specification ::- Unsigned.Jnteger-Ifteral [asc Idesc I

column-reference [asc Idesc

[4.2.1]
SQL-unique constrainit-definition ::. (see (SQL) 6.6)

[4.2.1]
SQL~unique specification ::= (see [SQL) 6.6)

[4.1.81J
sqlcode-assignment static-expresslon-list =~enumeration-literal

static-expression-list =~raise exception-reference

116 Intermetrics, Inc.

Appendix F - Syntax Summary

[5.21
statement commitstatement

delete_statement
insertstatementvalues
insertstatement-query
rollbackstatement
selectstatement
updateistatement
extended_statement

[4.1.4]
static-expression ::= value-expression

[4.1.8]
static-expressionjlist staticexpression {, static-expression }

staticexpression.. static exoression

[5.13]
statusclause ::= status statusreference [named_phrase]

[4.1.8]
statusjmapjdeclaration ::= status Adaidentifier_1

[named_phrase]
uses target-enumeration

Is (sqlcoe_assignment {, sqlcode assignment);

[3.4]
statusreference [modulereference . I Ada.identifier

[4.1.3]
subdomain declaration ::= subdomaln Ada identifier Is dom ref [not null]

[(parameter-associationlist) ;

[4.1.1.2]
subdomainjpattem::= subdomaln pattern is pattemrlist

end pattern;

[3.4]
subdomainreference [modulereference . I Adaidentifier

[5.12]
subquery (select [distinct I all] result-expression

fromclause
[where searchcondition]
[SOL_groupbyclause]
[having searchcondition])

[5.11.3]
subqueryorvalue speclist ::= subquery J (valuespeclist)

[4.2.1]
tableconstraint definition SQL uniqueconstraintdefinition

SQL_referentialconstraint definition
check_constraint_definition

Intermetrics, Inc. 117

SAMeDL Language Reference Manual ______________

14.2.11J
table-definition :: extended] table SQL-idenitifier_1 Is

table-..element (, table-.element}
end [SQL-identifier-2

[4.2.1]
table-element ::. column-definitionI

table constraint definitionI
extended-table-element

[3.3]
table-name :=[schemna-ref . SQLjdentifier

[3.3]
table-ref ::= table-name [[as] correlation-name

[3A]
table-reference :: schema-reference .] SQLjidentifier

[4.1.8]
target enumeration ::= enumeration-reference Iboolean

[5.10]1
term := factorI

term factorI
term Ifactor

[4.1.1.3]
type ::= dbms I not null I null

[5.3]
update-statement update table-name

set set item { , setiRem)
[where search-condition

[5.3]
update-value :=null Ivalue-expression

13.2]
use-clause ::= use module-name { , module-name

[5.11.1]
val-or-subquery :=value-expression I subquery

[5.10]
value-expression term

value -expression + term
value...expression - term

[5.11.3]
value-spec ::. input~reference

static-expressionI
user

[5.11.3]
value-specjlist ::. value-spec (,value-spec)

118 Intermetrics, Inc.

Appendix F - Syntax Summary

[4.2.2]
viewdefinition::= [extended] view SQL_identifier_1 as query.spec

[with check option 3
end [SQL identifier2 2I;

[3.2]
withclause ::= with modulename I as-phrase]

{, modulename [as_phrase]);

[3.2]
withschema_clause ::= with schema schema name [as-phrase]

{, schema-name [as_phrase]);

[4.1.1.3]
word list::= context clause I

null value I
nullbearing assign I
notjnull.bearing assign

L.m-

'Intermeirics, Inc. 119

Index

DBLengAda 38, 43, 44, 50-51, 57
Index DBLngNAME 31, 50, 59-60

DBMS type 23, 24
DBMS_-TYPE 24, 36, 62

A Default mapping 21
A Default value 20

.- Abstract interface 4, 45, 46, 51, 52, 64, 65, Defining location 13
66 Definitional module 4, 19

Abstract module 4, 41 Delete statement 46-49
Ada identifier 8 Delimiter 7-8
Ada indicator type 31, 43, 51 DOMAIN 25, 29, 36, 57, 61, 67-71, 73, 75
AdaNAME 30-31, 50, 57-58, 59-60, 61, 67- Domain conversion 5, 67, 72

71 Domain declaration 5, 24-28
AdaTYPE 29, 30, 50, 57-58, 59-60, 61
Anonymous type 29 E
A s p h r a s e I1 1n m r t o s s c a i n 2 , 2Assignment context 16 Enumeration declaiation 24, 32-3
Authorization clause 41 Enumeration decarapiong5 32-3

Enumeration parameter 20, 26B Exception 5, 17
Base domain declaration 5, 20-23 Exception declaration 5, 33
Base domain option 5, 20, 22-23 Exists predicate 75
Base domain parameter 5, 20, 21, 22, 25 Exposed name 11, 12
Base domain pattern 5, 20, 21-22, 25, 27 Expression assignment 25, 26
Between predicate 74 Extension 3, 5-6, 17, 23, 35, 36, 37, 41, 42,

C 49, 54

Character set 7 F
Close statement 6, 53-57 Fetch statement 6, 53-57
Column definition 35-36 From clause 12
Comment 9 Full name 16
Commit statement 46-49 Fundamental option 22
COMPada 38, 43, 44, 50-51, 57
Comparison predicate 74 H
Compilation unit 4, 7, 11 H d e a e1 ,1Component declaration 30-32HidnamI1,2
Concrete interface 4
Concrete module 4
Conform 16-17, 61 Identifier 8
Constant declaration 5, 28-30 Image default mapping 21
Context clause I11- 12 In predicate 74
Correlation name 12 Indicator type 62
Cursor declaration 4, 6, 49-53 INDICname 62
Cursor delete statement 53-57 INDICsql 44, 45, 56, 57, 58, 60
Cursor update statement 53-57 Input parameter 45, 57-58

Insert column list 47, 61-63
•D Insert from clause 47, 63-66

Data class 5, 8-9, 20, 22, 25 Insert statement 46-49
" Data conversion 23 Insert value list 47, 61-63

•Data conversions 38-39 Into clause 47, 54, 63-66
Database mapping 21, 24, 26 Item 12-13
DATACLASS 9, 23, 25, 28, 36, 57, 67-7 1,

73, 75

lntermetrics, Inc. 121

SAMeDL Language Reference Manual

L R
LENGTH 9, 25, 26, 29, 36, 57, 67-71 Rada 31
Length parameter 21, 26 Record declaration 5, 32
Lexical element 7-9 Record declaration. 30
Like predicate 74 Reference 12-16
Literal 8-9 Reference location 13

Reserved word 8, 10
M Rollback statement 46-49
Map parameter 20, 23, 26 Row record type 45, 50, 58, 61, 63
MODE 42, 43, 44, 55, 58
Module 4, 11 S

SAMeDLStandard 24
N SCALE 9, 25, 29, 36, 57, 67-71
Name prefix 14-15 Scale parameter 21, 26
Named phrase 30 Schema module 4, 34-35
NODOMAIN 67 Schema ref 12
NOLENGTH 67 Scope 12
NONAME 67 Search condition 72-74
NOSCALE 67 Select parameter 47-48, 58-60
Not null type 22, 27 Select statement 46-49
Not-null bearing type not null type names Select target list 60

are the targets of the function Self parameter 21
.i.AdaTYPE Separator 7

Null predicate 74 Set function 66
Null type 3 Set item 48
NullValueError 38 Simple name 8, 14

SQL identifier 8

O SQL_Char 24
Open statement 6, 53-57 SQL_DatabaseError 5, 17
Optional pattern phrase 22 SQL_Double_Precision 24

SQL_EnumerationAsChar 24
SQL_Enumeration_As_Int 24
SQL_Int 24

Pada 42-44, 54-55 SQ_ privilege-def'mition 35
Parameter association 20, 24 SQLpReal 24dn
Parameter profile 42-44, 54-55 SQL_Smalint 24
Parent parameter 21 SQLCODE 5, 17, 33, 44, 55, 56
PARMada 42, 44, 55, 56, 58 Sqlcode assignment 33-34
PARMrow 63 SQLNAME 8,62
PARMsql 44, 45, 56, 57, 58, 60, 62 SQLsc 73-74
Pos default mapping 21 SQLsq 75
Predicate 72-74 SQLve 71-72
Procedure 4 Standard base domain 24

Cursor 53-57 Standard post processing 5, 17
Non-cursor 41-46 Standard-Map 34

Psql 44, 55-56 Statements
Cursor 53-57

Q Non-cursor 46-49
Quantified predicate 74
Query specification 49

122 Intermetrics, Inc.

Index

Static expression 28-30
Status clause 5, 17, 45, 75-76
Status map 32
Status map declaration 17, 33-34
Status mapping 5
Status parameter 3, 17, 44, 55, 76
Subdomain declaration 24-28
Subquery 75

T
Table definition 35-36
Table name 12
Table ref 12
TYPErow 63

U
Universal constant 29
Update statement 46-49
Use clause II

V
VALUE 29-30
Value expression 5, 28, 66-72
View definition 36-37
Visible item 12, 16

w
With clause 11
With schema clause I 1

Intermetrics, Inc. 123

